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Abstract

_ Connected networks of nodes representing conceptual knowledge are widely
employed in artificial intelligence and cognitive science. This report describes a direct
way of realizing these semantic networks with neuron-like computing units. The
proposed framework appears to offer several advantages over previous work. It
obviates the need for a centralized knowledge base interpreter, thereby partially
solving the problem of computational effectiveness and also embodies an evidential
semantics for knowledge that provides a natural treatment of defaults, exceptions and

" “inconsistent”~or conflicting information. The model employs a class of inference
that may be characterized as working with a set of competing hypotheses, gathering
evidence for each hypothesis and selecting the best among these. The resulting
system has been simulated and is capable of supporting existing semantic network
applications dealing with problems of recognition and recall in a uniform manner.

ol

.

\

This work was supported in part by the Defense Advanced Research Projects Agency
under grant No. N00014-82-K-0193 and in part by the National Science Foundation
under grant number IST-8208571.

rrrerevey v
T

Cagian o
.

- . eye t
- w ot b

R
L et v

DR
KRR . . . LN L. . JREREN . R AT i
iy S - b S L . - - - | VP W P S T U UL WAL TR VY T W PRI G ST WA WD ISy W U U § At tate .o a4 a's tata%ta mwot.




SECURITY CL ASLIFICATION OF THIS PACE (Whea Datu Enter~d)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
R 11 0.4 45T AT
. TITLE (and Subtitle) v ’ S TYPE OF REPORT & PERIOD COVERED
Semantic Networks and Neural Nets technical report
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANTY NUMBER(s)
Lokendra Shastri and Jerome A. Feldman N00014-82-K-019%//
S. PERFORMING ORSANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Computer Science Department AREA & WORK UNIT NUMSERS

University of Rochester
Rochester, New York 14627

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE
Defense Advanced Research Projects Agency June, 1984
1400 Hilson Boulevard 13. NUMBER OF PAGES i
Arlington, Virginia 22209 100

14, MONITORING AGENCY NAME & ADDRESS(I! dilterent from Controlling Office) 15. SECURITY CLASS. (of this reporet)
Office of Naval Research

. ‘ Fied :
Information Systems unclassifie
. s ] . E /
Arlington, Virginia 22217 TSa " BECL ASSIFICATION/ DOWNGRAGING

1S, DISTRIBUTION STATEMENT (of this Report)

Distributed of this document is unlimited.

17. DISTRISUTION STATEMENT (of the abstract entered in Block 20, il difterent from Report)

&

h

r: . 18. SUPPLEMENTARY NOTES

L; None

9 : :
;. 13. KEY WORDS (Continue on reveras aids if necessary and identify by block number) -{
- , . . . . . :
M semantic networks, evidential semantics, massively parallel computation, .
h neural nets, network models. a
]

‘ !
:

;._ 20. ABSTRACT (Continue on reverse aide If necessary and identily by block number) {
) . Connected networks of nodes representing conceptual knowledge are widely }
;o employed in artificial intelligence and cognitive science. This report des- 1
A cribes a direct way of realizing these semantic networks with neuron-like

¢ computing units. The proposed framework appears to offer several advantages

. . s .

- over previous work. It obviates the need for a centralized knowledge base

g interpreter, thereby partially solving the problem of computational effective-

- ness and also embodies an evidential semantics for knowledge that provides

- . a natural treatment of defaults, exceptions and "inconsistent" or conflicting .

d FORM

7.- DD , an 73 1473  EOITION OF 1 NOV 6515 OBSOLETE unclassified

- SECURITY CLASSIFICATION OF THIS PAGE (ithen Date Entered) 3
L |




- - e TETWTA~ETmTNV . e = r . - -
Fallies T S . TR TR T e St

Lt & S e AR MR SR S AP A S BN AU S ML S TN AR, P,
)
s

3
t

SECURITY CLASSIFICATION OF THIS PAGE[ithar. Data Entsred)

N

= information. The model employs a class of inference that may be

- characterized as wor-ing with a set ~f competing hyrotnheses, gathering
evidence for each hypothesis and selecting the best among these. The

! resulting system has been simulated and is capable of supporting
existing semantic network applications dealing with problems of recog-
nition and recall in a uniform manner.

F L Accre;;}on‘ Fr’j
. NTIS CRA%I

- TIT TAR L

r P ced ™

Unannoiucs
Juctifiznti

d

,'«:'L e e ety

' R ’_'_’____'______..‘
By . .. —— e
D].S'- rib‘\lti ‘:'.]/ e

Availability Codes
Avcai. nd/or
sp o inl

)
-—
b e —
-

|
f
q
b
-
b
P
r .
-
-
¢
-
{ SECURITY CLASSIFICATION OF THIS PAGE/When Data Fntered)
t. A BT S S SN

MRS 8 N\ e aTalERRL L o o & sk e s

P T I




bl e e B e 2" S AR SN B A S A A LA A S A A A
-~
.

1. Introduction

The past few years have witnessed a significant reawakening of interest in
massively parallel computation, often portrayed as neural nets. Rapid advances in
computational, behavioral and biological theories have brought about a new and
much more sophisticated effort to model cognition and perception in physiologically
plausible terms. But essentially all of the detailed work has been concerned with
relatively penipheral (low conceptual level) activities such as early vision, word
recognition, speech and motor control. Higher mental functions such as language
comprehension, logical inference and planning have not been treated effectively with
massively parallel techniques and many scientists believe that it is impossible to do
so. One purpose of this paper is to suggest a particular set of (connectionist)
mechanisms for a general representation of conceptual information and for using this
information in inferences. These mechanisms appear to form an adequate base for
the study of problems of higher-level vision and language understanding.

The representation of complex knowledge and associative access to it are
recognized to lie at the core of intelligence. Semantic Networks — graph structures
with ‘concepts’ as nodes and ‘associations’ as arcs — have become a standard way of
envisioning knowledge representation schemes. This paper suggests a unified
approach to semantic network representations, which appears to have a number of
advantages over previous schemes.

Semantic network models of various kinds have been used in a wide range of
studies in artificial intelligence and cognitive science. One line of work uses
‘spreading activation” in concept networks to model contextual effects in e.g. word
perception [McClelland & Rumelhart 81], disambiguation [Quillian 68: Cottrell &
Small 83], speech production [Dell 80] and memory retrieval [Anderson 83]. Most
other work using semantic network models assumes that the network is passive and is
interpreted by a control program. Interpreted semantic networks can be further
divided into recognition and deduction applications of networks. Recognition of
complex visual scenes is almost universally based on network models at the higher
conceptual levels [Ballard & Brown 82; Marr & Nishihara 78] and speech recognition
work often has this character [Lowerre & Reddy 79]. Deduction models employing
semantic networks are generally employed in natural language and related research
[Walker 78; Findler 79).

All of these various uses of semantic networks make somewhat different demands
on the representation and have evolved to the point where they have distinct
computational characteristics. The most important point for us is the presence or
absence of a distinct interpreting program that can examine and modify the network.
For a variety of reasons to be outlined below, we will consider only systems with no
interpreter and attempt to show how such systems can support all the existing
applications of semantic networks. The only computational primitives in our models
will be the calculation and transmission of activity states. This is the computational
characteristic of neural net models -- whence the title of the paper.

In addition to the general virtues of uniformity we have several technical reasons
for exploring activation (or value passing [Fahlman 82]) models of semantic
networks. One technical problem arises when the information to be captured
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contains apparently inconsistent statements. A well known example is given below.
The four facts:

Dick is a Quaker

Quakers are pacifists
Republicans are not pacifists
Dick is a Republican

could well arise in real life without causing difficulty. In standard semantic network
models using conventional logic as a basis, the four statements entail a contradiction
which, in the worst case, could render the system useless. More sophisticated non-
monotonic logical treatments [Reiter 80], suggest that the system must choose a
consistent subset of the four assertions, but this entails making arbitrary choices and
amounts to ignoring some of the information provided. There is no denying that Dick
could be a Quaker and a Republican at the same time. There is some evidence th
Dick is not a pacifist (because he is a Republican and Republicans rend to be ncu-
pacifists) at the same time there is some evidence that he is a pacifist (he is a Quaker
and Quakers tend to be pacifists). One goal for our semantic network model is that it
be able to incorporate evidential statements like those in the example and to draw
appropriate inferences from them. The Republican-Quaker example is typical of a
large number of evidential conflict situations. For example: knowing that someone
likes Mexican food but dislikes chicken does not specify whether he will like Chicken
Mole. But if we know the strength of his likes and dislikes, the question might be
easily answered.

Another technical issue that we address in the current model is the specification
of "natural kind' terms. There is no way to specify exactly what conditions are
necessary and sufficient to have som::-ing be deemed an ‘elephant’ or ‘chair’ or
‘fight’ [Smith & Medin 81]. We will trc. * this issue also as one of evidence. The idea
is seen most clearly in the realm ¢ sisual input, where various features are
recognized with varying degrees of confidence. There is an enormous variety of
conditions under which one would be willing to assert the presence of a chair. In our
treatment, chair legs are evidence for the presence of a chair in the same way that
Republicanism is evidence for non-pacifism. The major difficulty with this approach
is the absence of an adequate mathematical theory of evidential reasoning: we wiil
say more about this in Section 5.1.

An evidential framework seems to be useful for both characterizing entities and
for dealing with conflicting assertions, but one could pursue evidential formulations
without abandoning the interpretive version of semantic nets [Lowrance 82].
Abandoning the interpretive model has several distinct benefits which will be
discussed at appropriate places in the paper. For now, we will be content with one
consideration which has led us (and others) to concentrate on massively parallel,
active networks for modelling intelligent behavior.

Psychological and biological results suggest that many cognitive tasks like visual
_ recognition, categorization and associative retrieval do not take more than 100
® sequential steps. This follows because typical neuronal firing rates are a few
milliseconds and the response time of cognitive agents during numerous
experimental tasks is a few hundred milliseconds. This observation imposes a major
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constraint on the manner in which conceptual information may be organized and
accessed and is one reason for our rejection of an interpreter. Other motivations for
the choice of spreading activation models include their good fit with human data on
retrieval [Dosher 83], on errors [Dell 80] and variability and the clear mapping to the
underlying physiological substrate.

The massively parallel (connectionist) formulation of semantic networks avoids
the interpreter bottleneck, but brings in a whole range of new problems in
representation, stability, learning, etc. There is a growing literature dealing with these
issues. We will concern ourselves in this paper only with representation questions,
using a particular computational model outlined in Section 1.2 and presented in
detail in [Feldman & Ballard 82]. There is enough experience with the theoretical
and experimental properties of this formulation to convince us that the key
computational questions can be resolved. The machine examples in this paper were
all built using a general purpose simulator [Small er al. 82] which has also been used
in a variety of other domains [Addanki 83; Cottrell & Small 83]. By suppressing the
computational issues, we are able to focus on the questions of representation and use
of knowledge of which there are plenty. The central question addressed in this paper
is the efficacy of a self-activating semantic network as the vehicle for conceptual
reasoning.

In our formulation, a semantic network (SN) is an information retrieval
mechanism with a limited amount of built-in inference (cf. [Allen 83]). The first
issues to be addressed are how a query is presented to a SN and how an answer is
returned. In order to keep the treatment uniform, we require that the query be
presented and the answer be received in connectionist fashion. This is achieved by
introducing a simple kind of routines expressed as connectionist networks. A query
arises from a point in a routine where information is needed and answers are
returned by activating appropriate units in the inquiring routine. OQur routines are,
like schemes and scripts, not adequate to model the full range of plans and actions
[Schank 82] but will suffice for our purposes (cf. Section 5.2).

We will start with a trivial example to introduce the notation and general
framework of our treatment. Figure 1.1 shows a fragment of a simple restaurant
routine for a person who always orders one of two lunches depending upon how
hungry he is. A routine is represented as a sequence of nodes (units) connected so
that activation can serve to sequence through the routine. Stepping from one node in
a routine to its successor will depend on a completion signal which will not be shown
explicitly. We depict action steps as oval-shaped nodes, queries as hexagonal nodes
and answers as circular ones. In this routine, ordering a meal gives rise to a query
about the person’s state of hunger, directed to the semantic network which this paper
is attempting to characterize. Answers are supposed to come from units (as yet
unspecified) that are connected to the [yes] and [no] units in the routine. The [yes]
and [no] nodes are primed by the question unit to be responsive to activation and are
oonnected in a WTA (winner-take-all) (described later in Section 3.2) fashion to force
a decision. Whichever answer node dominates will activate its successor and thus
trigger the appropriate speech act. We will obviously be dealing with more complex
routines, queries and answers, but the basic structure of this example will be
maintained throughout the paper. Some of the questions raised and avoided in this
formulation of the problem will be discussed in Section 5.
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The routine of Figure 1.1 is particularly simple because the query involves no
maput information. A somewhat more complex routine fragment is required for
someone who orders the daily special if it 1s a meal that he likes and falls back on his
regular order if the special doesn’t appeal to him (Figure 1.2). In this case, the query
to the Semantic Network must include some situational information, namely the
special featured that day. Routines will generally include several such parameters
that will need to be specified in the execution of the routine. We call these roles and
thev will play a central part in our treatment. A role will be bound to a concept for
the execuuon of its routine. In Figure 1.2, the {special] role might be bound to
'nwm]. We assume that this binding is implemented by a dynamic link network (cf.
‘Feidman, 82a)) so that activating either end of the [special ~ ham] link will activate
e other end. Notice that the binding will permit parameterized actions such as
»rdering ham when ham is the daily special. Roles correspond to typed or sorted free
..nables in a formulation based on mathem:iizal logic.

World knowledge. such as one’s taste for ham. is encoded in the semantic
network (SN) which is the main focus of this paper. For this introduction, v wil!
give a crude overview of how the SN\ and the luncheon routine would interact in
choosing what to order. The various concepts in the SN will be represented by
rndividual nodes, which will be depicted by rectangular boxes. Since there is no
mnrzrpreter. the links between concepts will have to be tightly specified in their
sprzading of activation. All of this is worked out in Sections 2-4. The oversimplificed
neraork given in Figure 1.3 has each kind of food directly linked > the answers for
which it is appropriate. In this case. activating the question {special appeals?] activates
= role node for [special] which activates its binding [hum]. The [ham] unit in the
rote network directly activates the [ham} node in the SN which sends activauon o
the particular [ves] node of this routine (as well as to many other places). Since this
routine and the particular [yes] node are enabled. activation continues to the
appropriate response. The dynamic link [special ~ ham] will then cause the word
“ham” i be spoken when the [say special] action is carmied out.

The remainder of the paper is concerned with the details of this process. Figure
1.4 gives a more accurate indication of the knowledge representation mechanism.
The network in Figure 1.4 encodes the following information:

HAM and YAM are two types of objects in the domain.

Objects in the example domain are characterized by two properties, H.45-
TASTE and HAS-FOOD-KIND.

HAM is SALTY in taste and is a kind of MEAT,

YAM is SWEFT in taste and is a kind of VEGETABLE.

Each arc in the network represents a pair of links, one in either direction. We are
using an arc in place of a pair of links to improve the readibility of these diagrams.

The triangular nodes in the network associate objects, properties and property
values.

Each node is a computing element and, when in an "active” state, sends cut

activation to all the nodes connected to it. A node may become active on receiving
activation from another node or an external source. Trnangular nodes behave slightly
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differently in that they become active only on receiving simultaneous activation from
two nodes.

The crude description given above is sufficient to demonstrate how simple
recognition and retrieval tasks may be handled by such networks. To find an object
in the network with a salty taste one would activate the nodes HAS-TASTE and
SALTY. The triangular node linking HAS-TASTE and SALTY will receive coincident
activation along two of its links and become active. As a result, it will transmit
activation to HAM which will ultimately become active.

Alternately, assume that one is interested in finding out the taste of HAM. This
could be done by activating the nodes HAS-TASTE and HAM. This will cause the
same triangular node to become active and transmit activation to SALTY. Eventually,
SALTY will become active completing the retrieval.

The two examples roughly correspond to the manner in which recognition
and retrieval take place in these networks. The detailed description of how questions
like these can be treated uniformly in connectionist networks is fairly complex and is
broken up into three parts. Section 2 describes our formalization of conceptual
knowledge without reference to particular computational mechanisms and may be of
independent interest to researchers whose connectionism remains inhibited. The
central ideas are the evidence formulation, multiple structural hierarchies and
articulating treatments of type-token and attribute-value relationships. Section 3 is
concerned with inferences in our interpreter-free model. The basic semantic network
is shown to be adequate for associative retrieval and basic categorization judgments,
along with some generalized inhentance inferences: It is suggested that routines and
their associated role networks suffice for a wide range of further inferences. All of
this is done in the absence of computational details, which are presented in Section 4.
The computational model includes the specification of the roles of connection and
activation for the different classes of nodes in the network and of the strength of
weights on connections. Section 5 consists of brief discussions of several important
issues that are beyond the scope of the current paper. These include technical
questions on convergence and evidence theory, the treatment of complex ontological
types such as events, and of diffuse conceptual structures, and the basic problem of
learning. This paper, then, fulfills one promise made in earlier connectionist tracts
[Feldman & Ballard 82; Feldman 82b] and indicates how several additional pieces
might fit into the puzzle.
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The next subsection briefly describes the connectionist model and may be
skipped if the reader is familiar with the model.

1.2 The Connectionist Model

L o =l i gu a4
e . .

o

- Connectionism provides a plausible model of computations carried out in
- neuronal networks and, independent of any such consideration, is a powerful model
of massively parallel computation. The details of the connectionist model in its
¢ current state of development have been laid out in [Feldman & Ballard 82; Feldman
-'. 82a]. We present the salient features below.

Connectionist networks are made up of active elements that are capable of
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performing simple processing. These units have very high fan-ins and fan-outs and »
communicate with the rest of the network by transmitting a simple value. A unit [
transmits the same ‘alue to all units to which it is connected. The output value is ;
closely related to the unit’s potential and is best described as a level of activation. A -
unit’s potential reflects the amount of activation the unit has been receiving from ]
other units. All inputs are weighed and combined in a manner snecified by the sire 3
Junctions and the potential function in order to update a unit’s potential. A more ]
technical description follows.

A network consists of a large number of units connected to a large number of
other units via links. The units are computational entities defined by:

{q} . a small set of states, (fewer than 10)
P : a continuous value called potential
v : an output value. approximately 10 discrete values

: a vector of inputs ij. I, ..1, (this is elaborated below)

together with functions that define the values of potential, state and output at time
t+ 1, based on the values at time t:

Pi+1 {----- P(i'{.p(.q‘\
Quep < Q(_l(.[.‘-l.q[)
Vigl V(ip.peqy

A unit does not treat all inputs uniformly. Units receive inputs via links (or
connections) and each incoming link has an associated weight. A weight may have a
negative value. A unit weighs each input using the weight on the appropriate link.
Furthermore, a unit may have more than one "input site” and incoming links are ]
connected to specific sites. Each site has an associated site-function. These functions
carry out local computations based on the input values at the site, and it i the result
of this computation that is processed by the functions P, Q and V. The notion of sites
is useful in defining interesting unit ehavior like AND-of-OR or OR-of-AN\D. Sites
will be used extensively in our solut:ons. The functions P, Q and V are arbitrary but )
in keeping with the underlying p'.'>sophy of these models. it is desired that these
functions be "simple.” The details of the functions used in this paper are presented
in Section 4; only the general form of the computation is needed for the next two
sections.
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2. Structure of Knowledge

In developing a framework for representing conceptual knowledge we will
concern ourselves with the internal representation that a cognitive agent may have of
the external world. We would like to emphasize that we are not interested in the
external world per se but rather in an agent's conceptualization of the external world.
The knowledge embodied in the internal representation of an agent 's highly
structured and interrelated and is less a collection of “facts” than an intricately woven
fabric of interrelated bits and pieces which fit together to form a comceptual
structure. In this section we will develop a vocabulary to describe the conceptual
structure and to specify the interactions that occur within it. This paper does not
address all the relevant issues and although some important problems are analyzed in
depth some others are merely identified. The framework shares features with other
semantic network and frame based schemes {Bobrow & Winograd 76; Brachman 77
Fahlman 79; Fox 82: Minsky 75; Roberts & Goldstein 77], but differs from all of
these in several fundamental respects.

2.1 Conceptual attributes

A cognitive agent interprets the external world in terms of certain conceptual
attributes and their values and all of the agent’s world knowledge is represented using
these attributes and values. In the restricted context of vision a conceptual structure
may be defined in terms of visual attributes like “color” (with values such as red.
blue, purple), "shape"”. "size", "texture" etc. Such a conceptual structure may be
extended by including non visual attributes like "weight,” “temperature,” "odor,”
"location,” "utility” and "function” (i.e. use). In addition to the conceptual attributes
mentioned above, typical semantic network relations such as is-a-kind-of, is-a-part-of,
is-an-element-of are also considered to be conceptual attributes in the proposed
framework. The distinction between different kinds of conceptual attributes is
discusse in Section 2.3.1.

The explicit identification of conceptual attributes and their values is a crucial
step in extracting the structure of knowledge because all other components of the
conceptual structure are defined in terms of the conceptual attributes and their
values.

Conceptual attributes need not be primitive. For example, a complex conceptual
attribute like "shape” may have finer structure consisting of several conceptual "sub”
attributes such as “length to breadth ratio” or “relations between sub-parts”.
Similarly, "physical property” may be regarded as a conceptual attribute in some
domain but may be composed of more specific conceptual attributes like “size",
"weight”, "color” etc.

2.2 Conceptual Entities

The primary level of organization in the conceptual structure centers around the
notion of conceptual entities. These are labelled collections of coherent <conceptual
attribute, value> pairs. For instance, an entity labelled FIDO may partially consist of
the following <attribute, value> pairs: “is-an-instance-of DOG, is-an-instance-of
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ANIMAL. has-body-part LEGS, has-body-part TAIL. has-coat-type FURRY ...". The
values of conceptual attributes are conceptual entities and hence conceptual entities
may be arbitrarily complex. This definition does not suggest circularity because
some conceptual entities are grounded in perception. Conceptual entities are like
concepts in semantic networks and will often be refered to as such, furthermore, we
will often drop the prefix conceptual in concepwal atuributes and conceptual entities
and refer to these as attributes and entities respectively.

Conceptual entities may denote different sorts of things '‘n the domain such as
objects, categories. events, locations and relauons. For instance, conceptual entities
may denote "my dog Fido", "the color red”, "Dog™, "Color", “the Sox Phillics
game”, "the concert tonight” or "John's passing of the ball to Leo".

Different classes of conceptual entities may have different sorts of <auribute,
value> pairs associated with them. Thus, physical objects mayv have atribuies
mentioned earlier like “is-an-instance-of”. "has-color”, " has-shupe” and "has-size
whereas attributes associated with events may be “has-/ “=tion”, "has-ageni”. " has-
time-of-occurrence” etc.

Since valucs of all attributes are conceptual entities, values of attributes such as
location and time are also conceptual entities. Thus, locations like “Harvard Square,”
“on the table,” "between London and Paris.” "in my backyard.” are all conceptual
entities and so are time specifications like “3 p.m. wday,” "tomorrow,” “before

dinner” and "15th November 1983."

Relations constitute a major class of conceptual entities. The representation of
relations is similar to that of other conceptual entities discussed above. An argument
of a relation 15 analogous to an attribute of an object. Thus, the representaticn of an
N-ary relation is like the representation of an object which has N\ attributes
associated with it. For example, the the two place spatial relation on may be
charactenized as a conceptual entity with two "conceptual attributes”™: on-1op and on-
bottom.

[n this formulation, relations are not primany concepiual entities. The information
encoded in relations is expressible as <::iribute. valued pairs of the arguments of the
relation. For example, the relation on represents information about the location of
both its arguments and this information may be encoded in the values of the
conceptual feature location of the arguments. Among other things, relations provide
an alternative means of structuring knowledge and may be viewed as “inversions” in
that they provide a way of expressing information which is not object centered. The
inverted representations make it easier to perform certain inferences.

el
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P 2.2.1 What distinguishes a conceptual entity

Although any possible collection of <conceptual attribute. valued> pairs is a
potential conceptual entity, only explicitly labelled collections are conceptual entities.
Which collections of <conceptual attribute, value> pairs will be grouped together to
form conceptual entities will depend on the domain being modeiled and more
@ importantly. by an underlying theory of learning or concept formation. We will say
more on this in Section 5.4.
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2.3 Conceptual Structure ‘Z

2.3.1 Properties and Structural Links

L

Conceptual entities were described above as collections of <conceptual attribute,
value> pairs wherein each <{conceptual attribute, value> pair related the conceptual
entity being described to another conceptual entity. Conceptual attributes are
classified into two broad categories: PROPERTIES and structural links. This
distinction is crucial and forms the basis of controlled interactions that may occur
between conceptual entities. Italicized lower case will be used to refer to structure
link names and italicized uppercase to refer to property names.

e
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Structural links provide the coupling between structure and inference. They
reflect the epistemological belief that world knowledge is highly organized and that
much of this structure can be factored out to provide general domain independent
inference rules. Structural links are attributes that have this quality and are used to
provide built-in inference paths. The most representative structural link is the is-an-
instance-of link that is used for "inheritance” in semantic networks. Our formulation
employs an extended notion of property inheritance and includes other structural
links such as the is-a-part-of links used to infer values of attributes such as HA4S-
LOCATION, and occurred-during links [Allen 83} used to make inferences pertaining
to time. Each structural link has an associated set of properties that may be inherited
along the link and this information is used to perform inferences.
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Properties correspond to the intrinsic features of Concepts and may vary from R
domain to domain. When describing physical objects the relevant properties may be
HAS-WEIGHT. HAS-SHAPE and H45-COlOR, while events may have properties like
HAS-LOCATION HAS-AGENT and HAS-TIME-OF-OCCURRENCE. Properties roughly
correspond to the notion of "roles” of KI.-ONE [Brachman 77], "role nodes” of NETL
[Fahlman 79] and "slots” of FRL [Roberts & Goldstein 77].

2.3.2 Types and Tokens

NIRRT RSN N
AENE - . g

A Conceptual entity may be classified as either a Type or a Token. Elements of
the physical world that are interpreted as instances by the agent are represented as
Tokens in his conceptual structure. For example, Tokens may represent: "Fido the
Dog", "the table in my office” and "the location that is the top of my table”. On the
other hand, Types refer to abstractions defined over Tokens. A Type when
instantiated or individuated maps into a Token but by itself it does not represent an
instance in the external world. Types are summary descriptions that may be viewed
as encoding the agent's belief that there are objects in the physical world that
conform to these description and that these descriptions may be used to make
inferences about objects. Examples of Types are "Apple” and "Dog". Types serve
two important purposes. They help structure and organize the knowledge about
Tokens so that the "quantum” of knowledge remains within manageable bounds and
more importantly, they provide the basis for inductive learning and the encoding of
abstractions.
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The is-an-instance-of relation expresses the relationship between Tokens and .
Types while the inverse relationship between Types and Tokens is expressed by the -]




“is-instantiated-by". Thus, FIDO is-an-instance-of DOG and DOG is-instaniiated by
FIDO. Henceforth, we will user the upper case o denote Tokens and Types.

Contrary to many standard interpretations, our framework does not define a Tvpe
to be a set of Tokens. Both Types and Tokens are conceptual entities and hence have
a similar syntactic structure namely a collection of {conceptual attribute. valued pairs.
One difference is that a value owned by a Type describes the value of a propertv shared
by a large number of its Tokens. (This notion will be refined in due course). Thus. i
Type ELEPHANT may own the value GRAY for the property HAS-COLOR 10 represent
the fact "most elephants are gray”. However, the Type ELFPHANT may not own am
value for the property HAS-AGE because the instances of elephants may not have any
charactenistic value for this property.

2.3.3 Hierarchies

The process of abstraction need not stop at one el Abstracuons over Types
may vield more abstract Types (or a Type may be a.:ferentated to produce more
refined Types). This leads to a hierarchical strucrure. In gereral, multipi. hierarchics
may be defined over the same set of Tokens. FLt example. a dog 1s a kind of animal
but is also a kind of pet. similarly. a friend of mine is human, a graduate student.
male. a classical music aficionado and of course a friend. The result of having
multiple hierarchies is that each Token may be related to more than one I'ype via the
same structural relation. The formulatun deseloped here allows any number of
hierarchies to be defined on the underlying tokens as long as the resulting structure
is acyclic. An example of such a acyclic struacture is shown in Figure 2.1. Note that
DOG is related to two Types via the is-an-instance-of relation name:v. ANINM I and
PET. Furthermore, the formulation allows redundan: links thus. besides links
encoding "DUSTY is-an-instance-of GOLDEN-RETRISVER”, and "a GOl Di\-
RETRIEVER is-instantiated-by DOG". there s also a link encoding "DUSTY is-ar-
instance-of DOG". Redundant links play an importan: role and the motivation fur
including them is explained in [Shastri §4].

The hierarchies are not limited to those defined by the relation is-an-insiar.c-of.
Other structural relations lir  is-a-part-~f and is-a-member-of also define hierarchies
over the tokens. These hierarchies differ in the nature of inhenitance that may occur
along them. This issue was addressed earher in Section 2.3.1.

2.4 A representational notation

We will employ a graphical notation in order to present the role of evidence in
the representational framework. Figure 2.2 displays a sampie network encoding the
following information: "Fruits are a kind of Things. Apple i< a kind of Fruit, Things
have the property color, Apples are generally Red or Green and Red and Green are
instances of Color”. Arcs in the figure are simplified representations of links; Figure
2.3 shows some of the links in greater detail. There exists a simple mapping between
networks depicted in this section and the actual connectionist network
implementation is described in Section 4.

The representation uses three kinds of nodes: the Type node. the Token node
and the Binder node. Type and Token nodes label collections of <auribute. value>
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pairs. While properties and values are accociated to Concepts via Binder nodes,
structural links are encoded directly as links. The framework permits associating
properties as well as property values with concepts. For example, the binder node bl
in the above network associates the property of having color with Things (and hence
Fruits and Apples) without specifying any particular color values. On the other hand
the Binder node b2 represents "“the value of the property color for Apples may be
Red"” and also "something that has color Red may be an Apple”. The interpretation
of b3 is analogous to that of b2 with Green replacing Red. The interpretation of
node b4 is slightly different. It represents the uncertainty in the system's belief that
"Apples can only be Red or Green". The exact interpretation of the notation requires
taking into account the weights associated with links.

A weight - in the range of 0.00 and 1.00 - is associated with each link and
provides the basis for an evidential semantics of knowledge. With reference to Figure
2.2 the weight W1 on the link from b2 to RED is a quantitative measure of the
evidence provided by the fact "an object X is an Apple” to the fact "the color of X is
Red" and similarly, the weight W4 on the link from b2 to APPLE is a measure of the
evidence provided by the fact "the color of an object X is Red” to the fact "X is an
Apple”. The weights W2 and W35 have a similar interpretation for the relationship
between Apple and Green. The above information may be represented in a symbolic

notation such as:
E(HAS-COLOR RED| APPLF) Wl

E(APPLE| HAS-COLOR RED) W4,
FHAS-COLOR GREEN|] APPILE) =

= W
E(APPLE| HAS-COLOR GREEN) = W

Wt
.

The weights are not independent. For instance, the weights on links from Binders
that relate RED to Concepts that are red in color should add up to 1.0 and similarly,
the weights on links from Binders relating APPLF to its various color value nodes
should also add up to 1.0 (W1 + W2 + W3 = 1.0 ). The weight W3 is a measure of
the "ignorance” or "uncertainty” in the information about Apples and their color
and is equal to: 1.0 - (W1 + W2). W6 is equal to W3 but encodes negative evidence for
APPLE which comes into play only if the value specified for color is neither Red nor
Green. If no color value is specified or if the specifed value is Red or Green, the
negative evidence is disabled.

We would like to point out some salient features of the representation.

i. Necessary properties and sufficient properties: The weights on links
from owners to binders provide a mechanism for encoding the differences in
the strength of the generalizations represented by a Type. Consider the
following assertions about Types and properties.

a) Hexagons have six sides.
b) Dogs have four legs.

¢) Birds fly.

d) Apples are red.

a) and b) are examples of assertions with the highest evidential weights.
followed by weights of assertions c¢) and d). In particular, a) is a statement
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about a necessary property of hexagons. The use of negative evidence permits
the representation of necessary property value. Because a hexagon necessarily
has six sides, a) will be encoded as E(HAS-NUMBER-OF-SIDES 6| HEXAGON) =
1.0 and hence HEXAGON would receive an extremely high negative evidence
if the object under consideration does not have six sides. The representation
s also permits representation of sufficient conditions. Imagine that being blue is
a sufficient property of blueberries i.e. "if something is blue then there is
complete evidence that it is a blucbern™ (or equivalently - the only blue ]
things in the domain are bluebernies) then this may be represented as
E(BI.UEBERRIES| HAS-COIOR BILUE) = 140,

ii. Multiple property values: In the example discussed above (cf Figure ]
2.2) Apples could be red or green in color and the representation of the value
of the property H4S-COLOR for the Type APPLE accounts for both these
colors. If the conceptual structure of the agent is such that red is a more
typical color of apples than green, then wl will be greater than w2,

~
» ot t

iii. Distinction betw.¢n Property and Value: The represcatation inclides
a node HAS-COLOR and a node COLOR. These two represent two di- nct
aspects of the knowledge encoded in the newtwork. The node His-Cotor
represents a property whercas the node COLOR represents a Tyvpe whose
instances may include WHITE. BLUF RED etc, each of which could be a value
of HAS-COLOR.
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iv. Scope of Properties: Properties are inherited in the same way as
property values. Once a property is associated with a Type it gets associated
with all Types or Tokens that occur below the Type in the is-an-insta+.e-of
hierarchy. Furthermaore, a Type or Token may own a value for a properts
only if the propr —. is owned by itselt or by a Type higher up in the is-an-
instance-of hier: .nyv. For instance, APPLE may own a val.: for H4S-Colr R
because that property is owned by FRUIT which is a superType of APPLE.

2.4.2 Representation of exceptions

In standard representation schemes, attaching a value V1 for the property Pl o a
Type T1 is considered equivalent to declaring:

VX TYPE(x. T1) =D Pi(x, V1),

for instance, vx TYPE(x, APPLE) => COLOR(X, RED)

The representation of a Token of T1 which does not agree with the value of the
Fé property Pl causes problems. This problem is referred to as the problem of
. exceptions and cancellation in Al [Fahlman er al/. 81; Brachman 82].

There would indeed be a problem if one were to interpret the following two
assertions together:

r! 1) vx TYPE(x, T1) => PlI(x, V1)
) 2) TYPE(A. T1) & PKA. V2)
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There cannot be any satisfactory interpretation of these two statements: they are
. simply inconsistent. (Assuming Pl(x,y) => (vz Pl(x,z) => z=y)).

The explicit distinction between Types and properties and the evidential
semantics of knowledge provides a natural representation of "exceptions™ and gives a
clean semantics to the is-an-instance-of link. In this framework, all exceptions are
stated in terms of property values and not Type memberships. Thus, either a Token is
an instance of a Type or it is not and the is-an-instance-of link states this
unequivocally. (The same applies to subTypes and superTypes).

The evidential framework allows the representaion of a range of
"quantifications” - universal quantification being a limiting case, and at the same
time rules out "genuinely” meaningless statements. In this framework, one cannot
both say,

"All Swans are white” and
"Giselle is a Swan whose color is Black".

However, one may say,

"Most Swans are white” and
"Giselle 1s a Swan whose color is Black.”

The following example illustrates the way exceptions are handled:

Let us assume that SWAN is a Type represented in the conceptual structure and
that one of the abstractions it encodes is: "all Swans are white" i.e. "if something is a
Swan then there is absolute evidence that its color is white”. Figure 2.4 depicts SWAN
along with an instance HANSA - notice that the weight from bl to WHITE equals 1.0.
If a new instance (Giselle) is introduced such that all its properties match those of
SWAN except that it is black, the network modification rules will have to choose
between three alternatives: (1) lower the weight W1 thereby redefining SWaN and
attach the new instance below SWAN, or (2) classify the new instance as something
other than SWAN and represent it separately, or (3) split SWAN into subTypes on the
basis of the property HAS-COLOR and attach the instance to the appropriate subType.
The first case corresponds to representing exceptions and is illustrated in Figure 2.5.
The crucial point is that GISEI.LE may not be attached as an instance of SWAN unless
the weight of the link from bl to WHITE is reduced to a value less than 1.0.

PS Not making a distinction between properties and Types leads to very unusual
o interpretations of the is-an-instance-of link (the “infamous” IS-A link). The
X cancellation of IS-A links to handle exceptions is symptomatic of this confusion. For
- a discussion of these problems see [Brachman 82].

2.4.3 Types and Prototypes

Use of weighted links leads to an interesting consequence. What would happen if
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the network were to "imagine a Type”. For a moment assume that this i+ ..+in to
activating the Type node and letting activation spread to the binder nodcs. The
weights on the links from owners to binders will select the most typical values of
each of the properties owned by the Type (it is reasonable to assume that typical
values have higher weights than less typical ones). Thus, the resulting “"mental
image” of the imagined instance of a Type will correspond to a maximally typical
instance of the Type (not necessarily an actual instance). This observation suggests
that treating links between owners and binders as weighted links does away with the
need of storing exemplars, and prototypes in the representation of Types in order to
explain certain behavioral results. The representation of a Type does double duty
and acts as if were a prototypical representation besides being an abstract
representation of a class of Tokens.

2.5 Evidential Basis of Categorization (Recognition)

In Section 2.4 we had observed that weighted link< provide a mechanism for
discniminating between different levels of confidence 11 the generalization made by
Types. In this section we consider the obvzrse namely cal2gorizing an occurrence
(assigning a Type to a collection of <property, value> pairs) on the basis of the
property values.

[t is possible to make the process of catezorization entirely symmetrical to the
process of retrieval by using the weights on kaks trom binders to oy ners. With the
weights taken into account, a match betw een the property values of a ~ dken and the
property values of a Tvpe can be assigned a metric. This process may be described as
that of collecting weighted votes: each Type receines some “evidence” from its
binders if a value of the Token's property matches that of the Type's. This evidence
is combined and each Type ends up with a quantitative measure for the goodness of
its match with the Token. The Type with the highest number wins. Furthermore. the
metric can be used to explain what 1s meant by a Tizken being & stereotypical or
prototypical instance of a category. If a Token has property values that match the
most of the typical values of the Type then this Token appears to be morc
stereotypical. This is a simplified version of the visual categorization model presented
in [Feldman 82b]. this paper supplies the elaborated semantic net model promised
there. In terms of Rosch’s work on prototypicality [Rosch 75: Smith & Medin 81j. @
Robin matches most of the properties of the represeniaticn of the Type Bird whereas
a Penguin matches only a few.

2.6 Representation of Relations

Figure 2.6 is an example of how relations are represented. The network encodes
the following information:

"ON is a kind of spatial relation

ON has two arguments: the thing on top and the thing at the botiom
A is a ball and B is a cube

A is on B".

Notice that the representation of relations is similar to that of other conceptual
entities like APPLE and PEAR. An argument of a relation is analogous to an attribute
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of an object. Thus, the representation of the two place relation ON is characterized as
a Type with two "properties” (arguments): on-top and on-bottom.

Many relations such as PARENT-OF and ON either hold or do not hold. However,
there are many relations that are best viewed as graded relations. An example of this
kind of relation is LIKE; as in "John likes Mary"”. There are two ways in which a
degree of strength may be associated with the representation of such relations. First,
“liking" itself may have a degree of strength associated with it; John may "like Mary
a lot” or "like her just a little". Second. an agent’s belief in the various degrees of
John's liking of Mary may also vary. Thus, one may strongly believe that " John likes
Mary a linle". We believe that the evidential framework will be suitable for
representing such distinctions. We intend to pursue this issue in the near future.
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3. Inference¢ in memory networks

Section 2 described a notation for representing knowledge and also provided a
partial specification of active networks capable of performing limited inferences on
the information represented in them. In this section we define the inferences
computable within these networks and describe how these can be extended by the
use of routines.

Controlled spreading of activation provides the basis for the built-in inference
mechanisms in our networks. As was described earlier, a major feature of these
networks is that unlike conventional semantic networks, they are not accessed by an
interpreter. Consequently, the limited inference mechanisms have to be hardwired
into the network and this makes these networks more complicated than typical
semantic networks. In order to keep the exposition clear, we will introduce the
additional machinery needed to control the spreading of activation as the need arises.
The method we have adopted is that of presenting a number of examples that
illustrate the various mechanisms involved. The discussion of the exact rules
governing the spreading of activation is postponed until Section 4.

As discussed in Section 1, questions for the Memory Network arise from routines
and the answers are assumed to be conveyed to Answer Networks which form part of
the routines. We will first specify the types of queries the Memory Network can
answer and then describe the mechanism for posing a query to and receiving an
answer from the Memory Network.

3.1 Nature of Queries

The questions to the Memory Network are framed in terms of conceptual entities
(concept), conceptual attributes (attribute) and the values of conceptual attributes.
There are three classes of basic queries that may be posed to the network:

Class I Queries:

These queries specify a concept and one of its attributes and seek the value of the
specified attribute for the concept. An example of such a query is, "What is the taste
of Ham". For the sake of brevity and uniformity we will express all queries of this
class as ?v ( 0 a ), which may be read as - "What is the value of the attribute a of the
owner 0. Thus,

"What is the taste of Ham" becomes -
W (HAM HAS-TASTE).

"What is the color of an Apple” maps to -
™ (APPLE HAS-COIOR)

As another example, consider the query:

"What is the nose a part of’, which is expressed in this notation as,

P

Bandoand,
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W (NOSE is-a-part-of).

Class 11 Queries:

A

These queries specify one or more attributes along with their values and seek an
entity that best matches this description. In our notation these queries are expressed
as 70 { (a v) }. which may be read as - "Which object 0 i1s described by the following
attribute value pairs {(a v)}. Some examples follow:

P ST )

"Find a red fruit”" ->

- % { (is-a-subtype-of FRUIT) (HAS-COLOR RED) }

g "Name an animal that flies. is white and quacks” ->

; % { (is~a-kind-of ANIMAL) (HAS-MODE-0£-L.OCOMOTION FLYING) (HAS-
, COLOR WHITE) (HAS-SOUND "quack-quack™) }

Class Il queries:

¢ Class Il queries seek the attribute that corresponds 10 an attribute value of an i
entity. These queries are represented as ?a {0 +). For instance. -

"What property of Apple has the value Red? -> )
7a (APPLF RED) ]

Queries as multiple choice questions

In this formulation we will assume that all guestions posed to the memory
. network are multiple choice questions. Fur the purpose of this paper this nay be
ﬁ" treated as a restriction on the kinds of queries thzi the network can answer. A wide
» variety of access to the network essentially consists of deaiing with muluple choice
: questions in the sense that the process of accessing the information in the nemwork
t may be viewed as selecting the best among a set of hypotheses on the basis of the
; evidence provided by the network and the quen.

b

[

Besides including the choices specified in the question, the s¢t of hypothesis
being evaluated explicitly includes two additional choices that correspond to the
answer "do rot know". The additional choices are:

A g A].‘l A d 4 o ‘\.m.n_.l .=

P PSP Ny

. 1) "unable to pick a clear winner because of conﬂict_ing evidence”
2) "unable to decide because none of the hypotheses is receiving supporting
evidence”.

The idea of an explicit set of answers fits in well with the routine networks
described in section 1 (recall the use of [ves] [no] nodes in the example routine
shown in figure 1.1). The use of "do not know”™ option allows us to explicitly account
P for uncertainty and is compatible with our evidence theory treatment (Section 5.1).
Section 3.4 describes how the “do not know™ response may be used for controlling
inference. Some situations may require handling questions that are not muitiple
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choice; such cases are discussed in Section 5.2.

r .

In the light of the assumption that all questions are multiple choice, all queries (at
least implicitly) include an enumeration of the possible answers. Thus, the queries |
corresponding to the above examples would look like:

™ {SALTY SWEET SOUR} (HAM HAS-TASTE)

™ {RED BLUE GREEN} (APPLE HAS-COLOR)

™ {CHEST TORSO FACE} {(NOSE is-a-part-of)} y

% {APPLE PEAR BLUEBERRY} {(HAS-COLOR REDXis-a-kind-of FRUIT)} \

i:]

%0 {SWAN DUCK ELEPHANT} {(is-a-kind-of ANIMALYHAS-COLOR WHITE)H AS-
SOUND "quack-quack™)}

M {HAS-TASTE HAS-SHAPE HAS-COLOR} (APPLE RED).
3.2 Query interface to the memory network

We now describe how routines pose queries to and receive responses from the
Memory Network.

Queries originate from hexagonal nodes in routines called Query nodes. Each
Query node is connected to the appropriate nodes in the Memory Network. If the
routine includes roles that need to be bound during execution, the links between the
Query nodes and the appropriate nodes in the Memory Network are established via
the Role Network. When a Query node is activated it sends activation to all the
nodes it is connected to.

The multiple choices that make up the possible answers to the query are encoded
within the routine in the form of a WTA network and are referred to as the Answer
Network. These networks contain a node for each of the possible responses to the
query and two special purpose nodes called the [?-conflict] node and the [?-no-info]
node. The Answer Networks are designed such that the [?-conflict] nodes win the
competition if there is a lack of decisive evidence and none of the possible responses
is a clear winner while the [?-no-info] nodes dominate the competition if none of the
possible responses are supported by the Memory Network.

The overall behavior of the knowledge representation system is a result of the
interaction between the nodes in the routine, the Role Network and the Memory
Network. Figure 1.3 depicted this interaction crudely, and we will now present it in
some detail.

Consider a routine that decides whether some food goes well with red wine. One
may imagine such a routine to include the following query: "Which of these best
describes the taste of the food: Sweet, Sour or Salty”? The above routine fragment
includes a role "food"” that gets bound to the appropriate food item when the routine
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is invoked. For instance, if the routine were o be wavoked to decide "Doces Ham go
well with red wine™?, the role "food” would get bound to "Ham" via a dynamuc link.
The connections are depicted in Figure 3.1 which we explain below.

As instantiated in this example, thc query encoded in the routine is of the form
N {SWEE1 SOUR SALTY} (HAM H.4S5-TASTE). This is encoded by direct links from
the Query node TASTE-OF-FOOD 1n the routine to HAS-TASTE, O-ENABLE and P-
ENABLE nodes and via dynamic links to the HAM node (the function of the enable
nodes is explained below). Following the Query node, the routine include: an
Answer Network with a node assigned to each of the three candidate responses.
SWEET. SALTY and SOUR (as a matter of consention, we will label these units r-
SWEET, r-SALTY, and r-SOLR). The nodes thus assigned 2rc connected. one o ore, 10
the nodes representing the entities SWEFT. SA! 1Y and SO R in the Memory Network.
These links are directional and the actisvauct flows from nodes in the Memory
Newwork to nodes in the Answer Network. The latter accumulate activation arnving
frc:n the Memory Network and compete with gach other to decide on the correci
answer The first node in the Answer Network w cross & preset threshold s
considered to be the answer As ovplained earlier. the Answer Network also includes
the [?-conflict] and [?-no-info] nodes and ans of these may dominute under the
specified conditions.

3.3 Infereace in the Memory Network

We now present examples that illustrate the inference process. The dynami s of
these networks and the computational details periaining w the implementation of
these mechanisms are descnibed in Section 4.

Example 1|
As the first exampie we consider the query:
W{SWEET SALTY SOULR} (HAM HAS-T4STE)

We have seen the way this query is set up in the networks in Figure 2.1, To see
how the query is processed we need to examine the functioning of the triangle
shaped binder nodes such as bl and b2 and the rectangular nodes representing
conceptual entities (cf. Figure 3.1).

Each binder node associates an owner with a property and a value. There is a
unique binder node for each such triple represented in the Memory Network. Each
binder node has three sites named o, p and v which receive inputs from the owner.
property and the value respectively. Each site also has an enabling input which must
be on for the input to register at the site. The three enable links are called o-enable,
p-enable. and v-enable. The enable links are controlled by three global units named
O-ENABLE P-ENABLE and V-ENABLE — one for each kind of enable link. On being
activated, each of these "global” units turns on ali the enable links it controis.

A binder unit is normally in a latent statc but becomes active if it receives
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coincident activation at two or more of its sites. On becoming active it transmits
activation to all the three nodes connected to it. (These are the same nodes that send
activation to the binder node). It should be noted that like any other node, the
binder nodes also maintain a continuous valued potential which builds up in
response to the activation arriving at various sites of the unit and the output of these
units is proportional to their potential. Figure 3.2 summarizes the computational

be]havior of binder nodes. The binder nodes are similar to those proposed in [Hinton
81).

Binder nodes that encode ignorance and provide negative evidence to conceptual
entities behave slightly differently. These nodes become active if the enable signal at
site v is on and site p is receiving input from the property in presence of the enable
signal. On becoming active these nodes send negative evidence to the associated
conceptual entities.

Each rectangular node accumulates the activation it receives from other units and
saves this value in the form of a potential. It also sends out activation proportional to
its potential to all units connected to it. The rectangular units have multiple sites,
some of which are mentioned below. Each rectangular unit may have sites for:

inputs it receives from all binder units of which it is the owner,
inputs from all binder units of which it i1s a value,

inputs from all binder units where it is the property and

inputs from structural links.

The detailed information about enable links and multiple sites will not be
displayed in the figures in order to improve readability.

With this introduction we may now describe the steps involved in the processing
of the example query: "What is the taste of Ham" ie.

W {SALTY SWEET SOUR} (HAM HAS-TASTE)
1. The units HAS-TASTE, HAM. P-ENABIF and O-ENABI E are activated.

2. The activation spreads and results in the node bl (cf. Figure 3.1) becoming

active as two of its sites - 0 and p receive simultaneous activation (along with the
enable signals).

3. bl in turn activates SALTY.

4. In the next few time steps, the potential of r-SALTY builds up and as there is
no competition it soon reaches a high value indicating that the answer to the query is
SALTY. A trace of the potential of selected units is shown in Figure 3.3.

The following five examples are based on the Memory Network shown in Figure
3.4. (The links from the property node HAS-COILOR to the various Binder nodes and
the enable signals are not shown in the figure). The information encoded in the
network may be summarized as follows:

-
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“Apples. Pears and Bluebemes are three kinds of Fruits. Apples are generally
Red or Green, Pears are generally Green and Bluzbernes are Blue. Most Red things
are Apples, most Green things are Pears but some are also Apples and all Blue things
are Blueberriecs. MAC6 and YEL2 are two instances of Apples”.

In terms of the evidential semantics the information encoded i1s as follows:

E(H45-COl1OR RED| APPLE) = 0.45
E(HAS-COLOR GREEN' \PPLF) = 0.25
E(HAS-COLOR ? | APPLE) = 0.30
E(HAS-COLOR GREEN| PEAR) = 0.85
E(HAS-COLOR ? | PEAR) = 0.15
E(HA4S-COLOR BLUE| BLUEBERRY) = 0.99
E(HAS-COLOR ? | BLUEBFRRY) = 001
E(HAS-COLOR YELILOW| YEL2) = 10

and

E(APPLE| HAS-COIOR RED) = 0.70
E(APPLE| HAS-COIOR GRFEN) = 040
E(PEAR] HAS-CO/.OR GREEN) = 0.60
E(BI.UEBERRY| HAS-COIOR BILLE) = 1.0
E(YEL2) HAS-COLOR YEILOW) = Q.30

For each of the following five examples we will state the querny. list the nodes in
the Memory Network activated by it. specify the structural links that it enables and
trace the potential of a select set of nodes.

Example 11
Queny: N {RED GREEN BLUF YELLOW} (MAC6 HA1S-COILOR)
Nodes Activated: HAS-COLOR. MAC6. P i NABLE and O-ENABILF.

Structural Link enabled: is-an-instance-of
Response Nodes: r-RED r-GREEN r-BLUE r-YELLOW [?-conflict] [?-no-info]

Figure 3.5 traces the potential of the nodes: APPLE, the four instances of COLOR
and the corresponding nodes in the Answer Network. In brief, the activation moves
up the is-an-instance-of link to APPLE. Now both bl and b2 become active and send
activation to RFD and GREEN. The stronger evidence for RFD results in its
dominating GREEN in the Answer Network.

Example III

In this example we demonstrate how information about exceptions plays a role in
retrieval from the Memory Network.
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Query: % {RED GREEN BLUE YELLOW} (YEL2 HAS-COLOR)

The only difference in this query and the previous one is that YEL2 is activated
instead of MACé6. The potentials of selected nodes is plotted in Figure 3.6.

This example illustrated how the dynamics of the network behavior causes the value
of a Token's property to override the value stored at the Type. The computation of
exception was affected by two factors: strength of evidence (the higher evidence
from YEL2 to YELLOW compared to that from APPLE to RED and GREEN), and the
proximity of information (the Binder local to YEL2 became active before the Binders
associated with APPLE). In our framework the structuring of knowledge is an integral
part of the evidential semantics and neither of these may be treated in isolation. The
structuring affects the dynamics of spreading activation and hence the computation
of evidence.

Example IV

Query: % {APPLE PEAR BLUE-BERRY} {(HAS-COI OR BLUF)is-an-
instance-of FRUIT)}

Nodes Activated: HAS-COLOR. BLUE. FRUIT, P-ENABLE, V-ENABLE

Structural Link enabled: is-instantiated-by
Response nodes: r-APPLE r-PFAR 1-BLUEBERRY [?-conflict] [?-no-info]

This is an example of a Class 1} query. All instances of FRUIT receive activation
along the is-instantiated-by links. BLUFBERRY gets additional evidence from b6 while
APPLE and PEAR get negative evidence. Notice that PEAR decays faster than APPLF.
This is because the uncertainty about the color of PEAR is less than that about the
color of APPLE and hence PEAR receives more negative evidence. The plot of the
potentials of the relevant nodes is shown in Figure 3.7.

Example V

Query: %0 {APPLF PEAR BL.UE-BERRY} {(HAS-COLOR REDXis-an-
instance-of FRUIT)}

Nodes Activated: HAS-COLOR. RED. FRUIT, P-ENABLE. V-ENABLE

Structural Link enabled: is-instantiated-by

Response nodes: r-APPLE r-PEAR r-BLUEBERRY [?-conflict] [?-no-info]

The plot of the potentials of selected nodes is shown in Figure 3.8. The difference
between this and the previous example is that the evidence from RED to APPLE was
not as strong as that from BLUF to BI.UEBERRY. As a result the time response of the
network was slower in this example.
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Example VI

Query: %0 {APPLE PEAR BLUE-BERRY} {(HAS-COLOR GRFEN)s-
an-instance-of FRUIT)}

Nodes Activated: HAS-COLOR, GREEN. FRUIT, P-ENABLE, V-ENABLE
Structural Link enabled: is-instantiated-by
Response nodes: r-APPLE T-PEAR 1-BLUEBERRY [?-conflict] [?-no-info]

[n thi. example APPLE and PEAR compete with each other because both receisve
evidence from FRUIT as well as their color value binders. PEAR reaches threshold
first because GREEN provides more evidence to PEAR than to APPLE. This is evideni
from the plot of the potentials of these nodes shown in Figure 3.9. The behavior of -
APPLE and r-PEAR nodes during steps 11 through 15 reflects the competition betw eer:
the o nodes and the emergence of r-PEAR as the winner.

To illustrate the role of the [?-conflict] node we modify the Mem 'ty Nciwork 1n
Figure 3.4 so that the cvidential weights on links from GREEN to APPLE and PEAR
becom - relatively similar. Specifically, we set:

E(APPLE| H4S-CO/OR GREEN) = 0.45
and F(PFAR| HAS-COLOR GREEN) = 0.55.

We now pose the same query to the medified network and trace the bebavior of
the Answer N\etwork nodes. The potentials of the relevant nodes are plotted in
Figure 3.10. The [?-conflict] node gradually gains potential as neither r-PEAR nor -
APPLF are able to dominate.

Example ViI
This example demonstrates inheritance along a structurw link other than the is-
instartiaied-by link. The Memory Network in Figure 3.11 encodes the following
information:
"Events represent a Type of conceptual entity.
Erents have the properties, location and time of occurence (besides others....).
I broke my arm during my first year at college.
I entered college in 1974."
Assume that the query is:
“In which year did | break my arm?”

N41972 1974 1976} (HAS-TIME-OF-OCCURRENCE BREAK-ARM)

The Query Network and the Answer Network might be set up as shown in
Figure 3.11.
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It was observed in Section 2.3.1 that each structural link is appropriate for the
inheritance of certain property values only. An example of this is the inheritance of
the value of the property HAS-TIME-OF-OCCURRENCE. The value of this property

. may be inherited by moving up the occurred-during links. The routines encoding a
query about the the time of occurrence of events will enable the occurred-during
links if necessary.

The example Query activates the units HAS-TIME-OF-OCCURRENCE, "l-broke-
arm”, P-ENABLE and O-FNABLE. It also enables the occurred-during structural link.

The activation moves along the occurred-during link and activates "My first year ]
in college” unit. The binder unit bl becomes active and sends activation to "1974" R
which in turn supports r-1974, Finally, r-1974 reaches a high degree of activation and
this completes the processing of the query.

Example VIII

As the last example of this subsection, we see how the question, "Is Dick a R
Pacifist” answered by a network which encodes the assertions. "Quakers are d
Pacifists”, "Republicans are non Pacifists”, "Dick is a Quaker” and "Dick is a _-*
Republican™. The Memory Network in Figure 3.12 encodes the above information. "]
The weights wl and w2 encode the strengths of evidence E(HAS-BELIEFS PACIFIST|
QUAKER) and E(HAS-BEIIEFS NON-PACIFIST| REPUBLICAN) respectively. Needless

to say, the encoding is an simplification but the claim is that it brings out the flavor Ry
of the manner in which such information is encoded. »
- Query: N (non-PACIFIST PACIFIST) (DICK HAS-BELIEFS) R
o
b . . . . "1
a Units activated: The Query activates the units DICK. HAS-BEIIFFS P- -
% ENABLE and O-ENABLE. :
F Structural Links enabled: is-an-instance-of.
s
Response Units: r-PACIFIST r-non-PACIFIST [?-conflict] [?-no-info]
- The activation moves up the is-an-instance-of links to QUAKER and REPUBLICAN
- units and both PACIFIST and non-PACIFIST receive activation in proportion to the

weights wl and w2 respectively.

An example trace with a particular choice of weights is shown in Figure 3.13.

Lan ae ae
e

3.4 Routine-based Inferences

The previous subsection showed how a number of different kinds of basic
inference could be captured within the connectionist semantic network. By
augmenting these mechanisms with routine-based rules of inference, we can greatly
extend the class of inferences supportable by the system. Although we will not press
any claims at this time, it appears that the current mechanisms can handle any chain
of inference that does not require backtracking (cf. Section 5.2).
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# We have already used routines in several important ways in inicrencing.
- Questions were assumed to arise from, and answer networks to reside in rcutines.
-p't' The question nodes provided simultaneous activation to the parameters of the query
{ and to the appropriate ENAR!® nodes for binders and for structural links. The
role~concept dynamic-link binding network was not stressed, but provides the
X system with its basic ability to handle variables, subroutines etc. The answer network
3 mechanism can also be extended and we will do this first because it is simple,

h The major addition to our previous treatment of answer networks is to account
explicitly for indecision. Suppose. in the luncheon script of Figure 1.3, the special is a
burrito and our hero doesn't know if he likes them or not. This would lead to

e AR & 2 2. A PN A . . AL

2 domination by the [?-no-info] node in the WTA of the Answer network. The anvr -

[?-no-info] can. like any other answer, lead to subseguent routine actions. Figur: 2 J
2 depicts a situation where insutficient information leads to the enabling of - - ‘
,‘ subtype-of links in the case that was not pant of the original query. This also suggests i
{ how the mechanisms described here can be wsed to provide varving degrees of

control over spreading activation in semantic networhs. [t turns out that the explhicit
[2-no-info] node also plays an important role in our estdence theon as discussed in

‘ Section 5.1 y
o y
i Another use of routines is to access the relational knowledge encoded in the !
] semantic network. The example in Figure 3.15 extends the funcheon routine to 1

include a check against one’s supper plans before ordering the special. The new nodc
[conflict with supper?] works by simultaneousty activating the roles [special] and
[supper] and the relation name [not on same dasy]. This (in a few steps) would cause
activation of [instance 6214] which is a positise instance of conflict between foods
and thus linked into the r-yes node in the routine. Similar mechanisms will work f. r
any query of the form R(A.B) where any of R. A. B can be variables (roles) bounc &
particular concepts. Another routine could provide actisation to e.g. all foods U. it
shouldn’t be caten after ham by activating fham). {firsi]. and [not on same day] to get ]
instances active and then activating [second] and {not on same day] to route
activation to foods such as [pork]. We have not vet said how one could ther muke
use of this diffuse activation in the network {(cf. Section 3.2). :

HT';Y

T
ST,

Another question that might arise is how the binding [supper~pork} came about.
It could be that the bir ding remained from morning as a kind of intermediate term
memory, but would urly handle a restricted set of cases. Figure 3.16 suggests a
general way that such a binding might be computed by an embedded (sub)routine.
The important point for us is that the [role~concept] mechanism provides a natural
way of linking together routines, quite like the binding mechanisms in logic or
programming. The (somewhat fanciful) routine in 3.16 has our hero employving the
strategy of imagining the situation (cf. [Feldman &2b}) of his kitchen that morning

M | Yv,r,-",.v,r,.T‘
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L and focussing on the traditional defrosting counter.

4

- This class of problem has not been worked out as carefully as some earlier
[ examples, but the basic ideas are similar. Activation of the appropriate situation nodc
L and relation query would lcad to activation of the appropriate unit in the network.
. ® The difference here is that the "answer” is being used to establish a binding in the
3 role network of supper ~ pork. There would have to be enabling links to facilitate
] such bindings, but this is straightforward. The general idea is that any route network
=
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can both take and return role ~ concept bindings, significantly broadening the range
of inferences computable with our networks.

The use of multiple role~concept bindings in a routine gives rise to a
computational problem that is particular to and ubiquitous in connectionist models
[Feldman & Ballard 82]. By depending on parallel spreading activation, we become
subject to the possiblity of false coincidences or cross-talk producing false responses.
This is particularly tricky since a role can be occupied by different concepts, but the
knowledge is all encoded by concepts. An example situation is one where John loves
Mary, Mary likes John and John has been transferred. We suppose that this event
makes John sad and Mary relieved. The technical problem here is that the roles of
John and Mary could be reversed and the mechanism must support either binding.
The routine fragment of interest simply activates {lover is sad] and [lovee is relieved]
sequentially. Each person is assumed to have several affective states including
[happy). [sad] and [relieved]. Consider the spread of activation caused by the first
action of the script. Activating [lover is sad] causes activity to spread to the [sad] node
of everyone, including John and Mary. At the same ume. the [lover] role in the
dynamic link network is triggered and this causes activation of [lohn]. This, in tumn,
activates [John's affect] and all its possible values. Now in the entire SN, there is only
one unit -- [sad] of [John's affect] -- which is receiving coincident activation. We
assume that this coincident activation raises the potential of John's [sad] unit: this is
the mechanism proposed for capturing the sadness of John in our SN.

The second action [lovee is relieved] will, of course. lead to coincident activation
of the [relieved] node of Mary. It is important to notice that it is not possible to do
these two actions in parallel. If both [lover is sad] and [lovee is relieved] were
simultaneously activated, then both the [lover] and [lovee] roles would become active.
This would lead, for example, to concident activation of the [relieved] node of John
as well as to the desired coincidences. This problem is an instance of the general
crosstalk problem in connectionist networks [Feldman & Ballard 82]. Whenever one
uses coincidence for inference. care must be taken to insure that no false
coincidences arise. This is most often done by sequential execution of separate steps.
The formation of role~concept bindings itself is one such case. At least for our
formulation, sequential processing is required whenever bindings are being
established (cf. [Anderson 83]). There are undoubtedly many other problems that will
arise in connectionist inference models: the current section is mainly intended to lay
a framework for a detailed further study of routine inferences.

B

35

o 3t

RS ORI

« . v -
iniatedun it !h -



. -
t‘ { 0-ENABLE |HAS-PROPERTY|

ST, 5 T T Y

t P~ENABLE

L

!

h V-ENABLE

HES-KIND

i

7 ANSWER
_ -~ NeTwork

—— e v YR LT Yy TV T v T YTy T T
* PR .




O-ENABLE

PROPERTY

CWNER

S

{ P-ENABLE

T0 PROPERTY

P

V-ENABLE

VALUE

> 10 OWNER

7o VALUE

® BINDER UNIT ACTIVE IF TWO or MORE SITES ENABLED AND RECEIVING INPUT

® UNITS SEND OUTPUT WHEN IN ACTIVE STATE

FIGURE 3.2

il i v DL . URARRRRN,




g
—TeTT T,

ot Tt e e
L . N
e [

T
v S
y e e

O A S ,'.",

Lan g~ N Jer it

bl
R
/”
8 //
/
/
’I
.6 ,
! bd = 0.0
.4 !
!
{
2 N b2,b3
! M
L YAM
0 e ————

1.0
8 SALTY SWEET, SOUR, r-SWEET, r-SOUR = 0.0
,’ ?-conflict = 0.9
.6 ;
!
1
1
.4 !
1]
]
1
.2 '
!
/ ?2-noinfo
2 4 6 8 10
QUERY: ?v (SWEET SALTY SOUR) (HAM HAS-TASTE)
Nodes Activated: HAM, HAS-TASTE, P-ENABLE, O-ENABLE
FIGURE 3,3 FIND THE TASTE OF HAM
I S




onmnan e - So B M Talaren au iy f  Fant an Surien AL AL S & SdRdNrRdrii i A ] T Y7 VY
" v
'

n'¢ 340914

: S3ION 319VN3 WOYd SLNANI GNV 407100-SWH WO¥4 LNdNI NV 2AvH SICON Y3ANIE T -
; 00% ) ;s
' ¥010) .

m_ sjuiy Ag-pajetrjuelsut-si
3 pue }0-3Jur}Sul-uUe-S| O~ Q .
v. - () ') .

; Q MOT13A :

: R o ‘
: g : ;

: 19 BN

: 66° A\ 71 oo

3 Sp°

g

i

L 1

m Ni3H9 05°0

4 .- Z13A 9\

v” e -

3 Y

m AYY3EINTE | T1ddV 5pou 4aputg 03

w 4070)-SVH

11044




- T e R R LA Mt L A e S A i T
s
f{ 1.0 mmm - —= == - =~ === APPLE
e -8 ,1/ _— r-RED
v 7

.6

' .5
iii .4 RED
;
- .2 GREEN
b .1 r-GREEN

——
_—

—
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FIGURE 3.5 FIND THE COLOR OF MACS6
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FIGURE 3,6 FIND THE COLOR OF YEL?

YELLOW, BLUE = 0.0
r-BLUE = 0.0
r-- ZLLOK = 0.0
?-conflict = 0.0
BLUE = 0.0

r-BLUE, r-RET,
r-GREEn = 0.0

?-conflict = C.C
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4. Implementation details 1

This section specifies a connectionist implementation of the knowledge
representation and retrieval framework developed in the previous sections. It
describes the computational characteristics of the units in the Memory Network and
routines. General purpose routine networks have not been implemented but the
current implementation can handle all the examples described in Section 3.3. The
problem of establishing dynamic connections for role networks is dealt with in
[Feldman 82a}.

A x.a B a

i
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We have already described the logical connection patterns in our networks in
Section 3 and will now specify the actual implementation and the dynamic behavior
of the networks, t.e. the rules for the spreading and accumulation of activation.
Spreading activation has been used as a parallel mechanism for propagating
associative relevance over semantic networks [Quillian 68; Anderson 83). In this work i
we have gone beyond this "facilitating” view of spreading activation and developed ]
mechanisms for using it in a more controlled and structured manner to carry out ;
limited inferences in active semantic networks. )

As was described in Section 1.1, each active element (unit) in the connectionist
framework is characterized by a potential function, a state function and an output
function, each of whose values depend on the current value of the inputs and the
previous values of the potential and the state. The potential function describes the
dynamics of a unit’s potential. The potential is a measure of a unit’s activation and
roughly corresponds to an integration of the input received by the unit in the recent
past. The state function governs the transitions in a unit's state as a function of its
current state, potential and inputs. The state of a unit controls the way it accumulates
potential and sends output to other units. Finally, the output function describes the
activation propagated by the unit on the basis of its state and potential.

anfoa o %

A unit might receive input from a large number of other units. All inputs to a

unit are not treated uniformly. Each unit has a number of input sites on which i
incident links impinge. Each site has an associated site function which maps its
inputs into a single value. The potential, state and output functions act on the input
via the values generated by the site functions.

A specification of site functions together with the potential, state and output
functions specifies a unit type (not to be confused with the use of Type/Token in
the representation scheme). Unit types are computationally distinct. Our
connectionist implementation uses five unit types in the Memory Network and six 1
unit types in the current implementation of routines. These roughly correspond to
the different shapes of nodes used in the pictorial representation of networks in the -
e previous sections. [n what follows we will describe the various unit types in terms of *
: their site, potential, state and output functions together with the weights used on ]
links incident on different sites. '

- Before we proceed to describe the different unit types we specify the general
. form of the potential function used in these networks. The function common to
, most of the unit types is described below.
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4.1 Potential Function

Each unit in the Memory Network and the Answer Network uses the following
potential function:

p(t+1) = vxp(t) + i(t) x [1.0 - vxp(t)] eq-l

RN “ Yo 'g g 0 o u g

Here p(t) and p(t+ 1) are the potentials at time t and t+1 respectively, i(t) is the
input to the unit at time t and ¥ is the decay constant. It is assumed that the input
values and the parameter v range between 0.0 and 1.0. The potential function
returns a ‘alue bounded by 0.0 and 1.0 and may be interpreted as an approximation
of a "leaky capacitor” where the potential decays with time and the integration is
“"damped” to saturate to a value of 1.0. A low value of ¥ means higher decay rates
and consequently faster dynamics but lower steady state values. This function is a
modification of the one reported in [McClelland & Rumelhart 81] and it has the
desirable property that it does not lead to an oscillatory behavior when the potential
reaches its maximum value of 1.0.

For any constant input |, the steady state value of the potential may be expressed
as .

P =1/l xT-v +1] eq-ll

Figure 4 1 is a plot of the steady state values of the potential for diffc::nt input
values with © set to 0.6. Figure 4.2 plots the time response of the potential function
for various values of inputs held constant in time. The figure also marks the ume
taken to reach 90% and 99% percent of the steady state values. In the design
reported in this document v was fixed at 0.6.

[ B R P
RN RN, § W

We now describe the different unit types starting with the simplest of these.

4.2 Characteristics of Query Units

SRR, 5%

The Query units have two sites - enable and done, and two states - active and
inert. The site enable receives inputs from other units in routines while the site done
receives inputs from the Answer Network. A Query unit is initially in the inert state
but switches to the active state on receiving activation at the site enable. While in -

v

P
dala ey

K

4

r this state its potential remains fixed at 1.0 and its output equals its potential. [t %'

f switches to the inert state when the input at the site done exceeds a certain threshold 3

- (currently G.3). ine detailed computational behavior of these units is specified in

§ Figure 4.3. -]
4.3 Unit types in the Memory Network ..

! =1

4 The Memory Network is encoded using five distinct unit types. These are:

a3 a) Enable Units: these units enable sites on binder units.

b) Relay Units: these are used to encode structural links.

. FESERRY




c) Binder Units: these act as binders between properties, values and the
owners (triangular nodes).

d) U-Binder Units: these encode the negative evidence and the uncertainty in
the information about property values of a Type or Token.

e) Concept Units: these represent Types as well as Token nodes.

4.3.1 Enable Units

These units have an extremely simple behavior. They have only one site labelled
query, which receives input from Query units in the routines, and two states: active
and inert. These units are initially in the inert state and on receiving input from a
Query unit switch to the active state. While in this state their potential is 1.0. The
units revert to the inert state once they cease to get input. This behavior is
summarized in Figure 4.4.

4.3.2 Relay Units

Relay units are used to encode structural links. As explained in Section 2.3.1, the
role of structural links is to provide channels along which activation may spread
during the retrieval process. Relay units provide the mechanism for encoding these
channels. Figure 4.5a shows some units interconnected via three kinds of structural
links and Figure 4.5b illustrates the actual encoding using Relay units. [n general,
every Concept unit has a number of Relay units associated with it; one for each kind
of structural link relating it to other concept units. In the example shown in Figure
4.5b the units A. C and F own two Relay units each because they have two kinds of
structural links associated with them. On the other hand, even though E has two
outgoing links it owns only one Relay unit because both the links are of the same
kind.

Relay units have three sites: owner, upstream and enable. The input from the
owner concept is incident on the site owner while the inputs from other Relay units
are incident on the site upstream. The activation propagated by the Relay unit is
modulated by an enable input; if this input is off, the propagation is weak while if it
is on, the propagation is strong. Currently, the enable signal has two levels but it is
trivial to extend this to allow a range of modulation.

The details of the computational characteristics of these units are described in
Figure 4.6. The design involves specifying three parameters:

a . the degree of attenuation per structural link and

oy, and o; . the strength of activation corresponding to the high and low
values of the enable signal.

The choice of parameters depends on the manner in which we want the activation to
spread along structural links. In order to illustrate how the parameters are fixed, we
will describe this process for the is-instantiated-by link. An is-instantiated-by link is
the inverse of an is-an-instance-of link and is an example of a "topdown" link. Such
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links normally have a weak "priming” or "facilitation” effect but pl.. a moic
important role in the processing of Class 11 Quenes (cf. Section 3.i).

We begin by fixing the weight of all incoming links to be 1.0. Next we make
three design decisions in order to constrain the choice of parameters:

1) If a concept unit is at a potential of 1.0, then all its neighboring concept
units linked via is-instantiated-by links should reach a potentiai of around
0.15, provided these links are enabled.

2) The effect should gradually decline as we move along successive links and
after five levels should be around 0.05.

3) If the structural links are disabled, the potenual of the immediate neighbor
should remain in the vicinity of 0.05.

The value 0.15 in the first constraint is a meusure of the ¢vidence provided by a
Type to each of its instances during the processing of a query that specifies « Type
and seeks an instance of that Type (Class 1l Qucny). The low value of 0.05 in the
third constraint is in keeping with the view that it is intended to model "priming”
effects which are typically very weak. The exact values are not very crucial and an
alternate set of comparable numbers could have been chosen.

These constraints may be expressed using the following equation:
l=0Xxa" eq-1il

where [ is the input available n levels away from a "source” (Concept unit) at

potential 1.0. Using eq-l we find that the inputs required by a Concept unit to reach

potentials of 0.05 and 0.15 are 0.02 and 0.07 respectisciy. Substituting these values
in eq-lIl the constraints may be expressed as :

opXa= 0.07,

oy X a® =~ 0.02 and

Ol X a S 0.02

There are many solutions satisfying the three constraints and the set of values
chosen is: ¢y = 0.03, ¢, = 0.08 and « = 0.80.

With this choice of values the resulting sequence of potentials at successive levels
starting from a unit with potential 1.0 is:

1.0 0.15 0.12 0.09 0.07 0.06 -- with is-instantiated-by links enabied, and
1.0 0.05 0.04 0.03 0.02 0.02 -- with the links disabled.

This example suggests that the space of design parameters is underconstrained
and to a great extent the choice of parameter values depends on the designer’s
judgement. However, it should also be obvious that there are precise rules
constraining the set of possible choices. The approach has been to make a ‘2w
arbitrary choices and then utilize these as constraints to obtain the remaining values.
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Just as is-instantiated-by links may be characterized as "topdown" links, some
other kinds of structural links may be classified as "bottomup”. These links differ
from "topdown" links in that when enabled they transmit much stronger levels of
activation. A good example of a "bottomup” link is the is-an-instance-of link. The
values of ¢| for "bottomup"” links is the same as that for "topdown" links but the

value of oy, is significantly higher (0.71). Consequently, the resulting sequence of

potentials at successive levels starting from a unit with potential 1.0 and with the is-
an-instance-of links enabled is: 1.0 0.77 0.68 0.59 0.52 ... .

4.3.3 Binder Units

A Binder unit has three input sites labeled p, o and v (for property, owner and
value respectively). Each site has two links incident on it. One link is an enable
signal from the appropriate enable unit and the other is the input from a Concept
unit. For instance, the site p receives a link from P-ENABLE and another from the
Concept unit representing the property associated with the Binder. The enable
signals are either ON or OFF and for a site to be active the associated signal should
be ON. The computational characteristics of Binder units are described in details in
Figure 4.7.

All the sites have the same site function. This function has the effect of raising
the weights of the inputs when two or more sites are active. The potential function is
as described in Section 4.1 with the input (i(t)) being the sum of the values returned
by the three sites. Binder units have three states: latent, hyper and refractory. The
unit enters the hyper state if two or more sites are active. In this state its potential
grows at a high rate. The unit remains in the hyper state for 25 time steps after
which it switches to the refractory state. In this state it ignores its inputs and its
potential gradually decays. The unit switches back to the latent state once the
potential falls below 0.05. The choice of 25 steps is based on the time it takes for a
typical query to be processed from start to finish. The use of the refractory state is to
bring back the system to a quiescent state. The unit transmits activation in all except
the latent state and the value transmitted equals the unit's potential.

We outline the procedure for arriving at the weights and the input scaling
parameter used in the hyper state.

A Binder unit serves two purposes. Its primary function is to detect simultaneous
activation of two of its three neighbors and to activate the third when this happens.
The secondary purpose of these units is to participate in "facilitation” effects by
accumnulating potential even in the absence of enable signals. The states hyper and
latent characterize the two functions.

The weights of 0.05 and a scale factor of 6.0 are arrived at by considering the
following constraints:

a) Even if all three units connected to the Binder unit are at a potential of 1.0
the potential of a Binder unit should remain well below 0.5 as long as the
enable signals are off. (0.5 being the lower end of the range of potential at
which a unit is considered to be "active” i.¢. in a high state of activation).
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b) If any two sites are active (enabled and getting more than half the
maximum input), the potential of the Binder uni* should reach at least 0.5 (a
unit may be considered to be active above this value).

We fix the uppermost value of potential in the first constraint at 0.30. By using
eq-ll with Py set 1o 0.30, we find that the total input to the unit should be

approximately 0.15. As there are three sites, this gives a weight of 0.05 per site.
Notice that the choice of 0.30 for the maximum value of potential was arbitrary, one
could as well have chosen 0.40 or 0.25 and obtained weights of 0.07 or 0.04 instead.
As we said above the design is underconstrained and different sets of consistent
weights may be chosen.

The scaling factor is calculated by considering the second constraint. i.e the unit
should reach a value of at least 0.50 when two of its sites are active Given that a site
may be active even if the input is half its maximum value. we have the following
condition;

If M,,4i) 1s the minimum value of input for which we want the unit to reach a
potential of 0.5. then My.4; is given by: 2 X 0.5 x 0.05 = 0.05

(two sites active each getting half of maximum input with weights of 0.05)

Using eq-Il or Figure 4.1. it may be calculated that Mreq' the total input needed
for tiie unit to reach 0.5 is 0.30. This gives us a lower limit on the scaling factor of
Mreg / Mavajl Which is 0.30/0.05 = 6.0.

4.3.4 U-Binder units

In Section 2.4.]1 we describcd how negative evidence is encoded using special
Binder nodes. These Binder nodes were activated only if an inapplicable proper
value was specified and on being activated they sent an inhibitory response to their
owner (a Concept unit). The U-Binder units encode these special Binder nodes. The
detailed description apprears in Figure 4.8 and we will only describe the differences
between the Binder and the U-Binder units.

Besides the three sites - p. v and 0. U-Binder units have an additional site labeled
b. This site receives inputs from Binder units related to the relevant property and
owned by the same Concept unit that owns the U-Binder unit. The site b becomes
active if the input indicates that a Binder is in the hyper state. Unlike the
corresponding sites on Binder units, the sites v and o of U-k.ader units receive
inputs only from the appropriate ENABIE units and are considered active if the
enable signals are ON.

A U-Binder unit enters the hyper state if b is not active but both p and v are
active ( b is an inhibitory site). In this state the unit sends output after a delay of one
time step.




4.3.5 Concept units

These units represent Types as well as Tokens in the Memory Network and their
basic function is to integrate the incoming activation. The computational features of
the Concept units are described in Figure 4.9. These units have a site for structural
links (relay), three sites for receiving inputs from Binders (bv bp and bo) and a site
(query) for receiving inputs from Query units in the routines.

The links incident on the site relay have a weight of 1.0 while the weights on
links at the site bp are 0.80. The links incident on sites bo and bv are evidential links.
The weight associated with a positive evidential link of strength e is such that it will
drive the potential of the target unit to e in the absence of other inputs. The values
of positive evidential weights are obtained using eq-I and they may range from 0.0
to 1.0. The weights on links from U-Binder units are negative and their value is
equal to the strength of negative evidence.

While the positive inputs are simply added. the negative inputs from U-Binders
are treated differently by Concepts and their contribution is given by:

log( abs(input)), bounded between -2.0 and 0.0

The rationale for using the logarithmic function is as follows: for a given
property, if there is very little uncertainty that the values specified by the Binders
are the only possible values and a wrong value is specified, then the negative
evidence for the Concept should be high. However, if the uncertainty is high then
the negative evidence should be low. In the limiting cases the negative evidence
should be 0 (total uncertainty) or -0 (no uncertainty). A negative evidence of -o¢ is
an idealization and we use a bounded but high negative value.

Unlike the Binder unit, the sites on the Concept units have multiple inputs
incident on them. Different sites have different site functions and information about
potential function, state function and the output function is described in Figure 4.9.

4.4 Characteristics of the units in the Answer Network

Having specified the connectivity and also the computational characteristics of
units in the Memory Network, we next examine the units in the Answer Network.

There are five kinds of units in this network. These are the Response units, the
Max-calculator units, the Conflict-detector units, the ?-conflict units and the ?-no-
info units.

4.4.1 Max-calculator units

A Max-calculator unit has one site namely, max. All inputs from Response units
are incident on this site. The site-function returns the maximum of these inputs and
the unit’s potential takes on the value returned by the site-function. The output of
the unit is equal to the value of its potential. Refer to Figure 4.10 for details.

4.4.2 Conflict-detector units
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A Conflict-detc -tor unit has two sites: sum and enable. The site enable receives
input from the Query unit that initiates the query and it simply returns the input
value while the site sum receives inputs from all the Response units and viurns the
sum of these values. Initially, a Conflict-detector unit starts out in the ine:t state and
ignores all inputs at the site sum. On receiving a positive input at enable 1t switch: -
the initial state. In this state the site sum processes its inputs but the unit maintains a
potential of 1.0. If the value returned by sum «xceed .0 the unit switches to the
interim state and its potential equals the inverse of the value rewurned by sum
(subject to a maximum o 1.1 and minimum of 0.1). The unit switches 10 the inert
state whenever the input «( enable falls to 0.0. The output of this unit is equal to its
potential. Figure 4.11 specifies this information in detail.

4.4.3 Response units

The Response units have fuur sites. One for inputs from the Memory Network
(m-net). one for input & ~ tne Conflict-detector unit (sum), one for input from the
Max-calculator unit (mav) and the last one (enable) for inputs from Query units. All
the sites except enable simply return the value received by them. The sitc enable
returns the maximum value received by it. The unit starts out in the inert state. In
this state it ignores all inputs at sites m-net, max and sum. The unit switches to the
active state if the site enable returns a positiv. value. In this state the unit maintairs
a potential but the growth of potential is governed by the values returned by the
different sites as described below:

1. The Input is defined as the current potential minus the input from the
Max-calculator unit pius the input from the unit in the Memory Network.

2. The value of v is set to the input received from the Conflict-detector unii.

Once the potential exceeds a preset value (currently 0.80), the unit switches to the
winner state. If the input at enable falls to 0.0 the unit reverts to the inert state and
its potential gradually decays to 0.0. The output of these units equals its poiential.
Figure 4.12 summarizes this information.

The network composed of Response units, the Conflict-detector unit and the
Max-finder unit is an efficient implementation of a winner-take-all network (WTa)
where the competition is set up between the Response units. This design of a Wia
has many advantages over earlier ones. First, it uses only O(n) links as against O(n-)
for a WTA of size n. Second. it has a built in preference for finding a <ingle winner.
If more than one Response unit is getting strong evidence, the v “'1b:. parameter ©
has a dampening effect on the growth of the potential of the 1.c:ponse units and
none of the units reaches a very high value of potential. Thus, if for some reason «
clear winner is not immediatelv available the competition is automatically extended.
This permits evidence to accumulate over varying periods of time. This feature is
very important if evidence from multiple levels in the Memory Network is to be
integrated. The computations in the Memory Network may now perform a
hierarchical decision making process (but parallel within a level in the hierarchy).

However, there are cases in which there is simply no clear winner and none of
the Response units ought to dominate. Two such cases identified in Section 3.1
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were: a) none of the Response units get evidence or b) more than one Response
units get nearly equal evidence. The following unit types handle these two cases.

4.4.4 ?-Conflict Units

7-Conflict units are designed to win if more than one Response unit is receiving
evidence from the Memory Network and yet no single Response unit is able to
dominate the competition. These units have two sites sum and enable. The former
receives input from the Conflict-detector unit and returns the inverse of the value
and the latter returns the maximum value of its inputs. The potential of these units
grows if the value returned by sum exceeds 1.0 and the site enable is receiving
positive input. Otherwise the potential gradually decays to 0.0. The detailed
description is given in Figure 4.13.

4.45 ?-No-info Units

A 7-no-info unit gains potential if none of the Response units receive any
evidence from the Memory Network. The unit's behavior is very simple and is
described in Figure 4.14. A positive input at site max indicates that at least one
Response unit has a positive potential. In this case, the unit’s potential decays from
its current value. [f the input at site max is 0.0 then the unit gains potential. The
only significant point is that there are two rates at which a ?-no-info unit may
accumulate potential. If only local evidence in the Memory Network is to be used
during the query, the rate of accumulation may be increased by activating the site
accum-rate.

4.5 Conclusion

The implementation described herein is evolving over time. However, the main
features have been stable for nearly a year. Work is in progress to formally
characterize the computations performed by the units in the Memory and Answer
Networks and to relate the dynamics of these networks to a formal theory of
evidence. A discussion of these issues appears in Section §.
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= to MEMORY NETWORK

FROM OTHER UNITS Z \
> NABLE ‘ t" ANSWER NETWCAK

IN THE ROUTINE T\ /

from ANSWER NETWORK

\' 4

WEIGHTS :
r
All incoming links have a weight of 1.0 ?
SITE FUNCTIONS ]
ENABLE: Returns the value of the highest input j
. DONE: Same as above d!
POTENTIAL FUNCTION
p(t+1) « 1.0if q(1) = active : p(t+ 1) 1s the potennial at time t+ 1
+ 0.0 otherwise . Gi1) is the state at time t

STATE FUNCTION !
]
|
ENABLE > 0 i
IJw
START >—{ INERT @ ;
STATE X
DONE > 0,8* *DESIGN PARAMETER ;
OUTPUT FUNCTION ]
) ;
] o(t) = p(t) |
FIGURE 4.3: Query Unit *
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from QUERY UNITS QUERY 3 to BINDER UNITS
?
*‘1
WEIGHTS %

All incoming links have a weight of 1.0
SITE FUNCTIONS

QUERY:  Returns the value of the highest input
POTENTIAL FUNCTION

e AL L L

p(t+1) « 1.0if g(t) = active

« 0.0 otherwise

. TR

STATE FUNCTION

7Y RTINS | N NP NP

3 START
g STATE
-4
- ;
’
i OUTPLT FUNCTION
o(t) « p(v)
!
b

‘ FIGURE 4.4: Enable Units !
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FROM QUERY UNITS

. ENABLE \ TO OWNER AND q
R

FROM RELAY UNITS_ )LUPSTREAM S OTHER RELAY UNITS g
UPSTREAM DOWNSTREAM ]

- EROM OWNER
Q% (CONCEPT UNIT)
"

E] WEIGHTS

All incoming links have a weight of 1.0

1 J
[» SITE FUNCTIONS
[} ENABLE: Returns the value of the highest input §
L UPSTREAM: Returns the sum of all inputs |

‘ OWNER: Returns input X ¢}, if state = enabled ;

else returns input X o, .

:l POTENTIAL FUNCTION |
. 3
f p(t) « max ( UPSTREAM, OWNER )

s
. " .

STATE FUNCTION

ror v Pow e
e d O Lo ety

If ENABLE > 0.0 then q(t) = enabled

P

else if potential > 0.0 then q(t) = active

. Fun

else q(t) = latent
| OUTPUT FUNCTION
[ 5
L o(t) « p(t) X a Currently a = 0.80 and o} = 0.03 _j
K “topdown™ links have oy, = 0.08 while ..
"bottomup” links have oy, = 0.71 ]
- FIGURE 4.6: Relay Units |
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P-ENABLE SIGNAL
FROM PROPERTY——— 3%
0-ENABLE SIGNAL\\1¢¢Vk*

FROM OWNER 0

V-ENABLE SIGNALW

v
FROM VALUE——“”—__———’QL///

WEIGHTS

UNITS

Enable signals are either ON or OfFF, other links have a weight of 0.05
SITE FUNCTIONS

All sites have the same site function:
If state = hyper return input x 6.0
if state = refractory returm Q.U
if state = latent return input

A site is active if the enable signal is on ar'xd the input 1s at lcast half its maximum value.
POTENTIAL FUNCHION
p(t+1) « Txp(t) + i(t) xX(1.0 - v xp(t))
T = 0.6, i(t) = sum of values returned by all the sites.

STATE FUNCTION

2 OR MORE SITES ACTIVE

IF POTENTIAL FALL
BeLow 9,05

REFRACTORY :
AFTER 25**
TIME STEPS
OUTPUT FUNCTION

If g(t) = latent then  o(t) « 0.0

* %
SIGN PARAMETER
else oft) « p(t) DE

FIGURE 4.7: Binder Unit

TO PROPERTY, OWNE®,

VALUE AND U-BINDER




.....
Bt i i fod SL LS re o e areu s arn gt At S SO AOSLERA AP EIEYC AR R N

|

. P-ENABLE SIGNAL
- FROM PROPERTY P
t |
O-ENABLE SIGNAL—WAA—3 O 5. TO OWNER AND .
B VALUE UNITS :
- FROM i
E V-ENABLE SIGNAL—MVAM~ BINDER UNITS
WEIGHTS !
3

e

Enable signals are either ON or OFF, link from Property have a weight of 0.05
while links from Binders have a weight of -1.0

T

SITE FUNCTIONS ;
. All sites ignore all inputs in refractory state. |
- B: If any input less than half the minimum value then site is )
) active. Returns the minimum input value.

r P If P-Enable ON and input greater than half the maximum
1 then site active. Returns the input value if state = latent ]
: but returns 6 X input if state = hyper. .
o.V: Site active if Enable signal is ON. p
4
S POTENTIAL FUNCIION i
@ p(L+1) « Txp(t) + i(t) x(1.0 - TXp(1) :
I v = 0.6, i(t) = sum of values returned by all the sites.
; STATE FUNCTION B NOT ACTIVE BUT ,
ﬂ? P AND TIVE !
. START R
- STATE LATENT :
REFRACTORY i
IF POTENTIAL AFTER 25 TIME STEPS -
FALLS BELow 0,05 .
OUTPUT FUNCTION [

If q(t) = latent then  ot) « 0.0

else*  of1) « p(t) j
* No output in the time step immediately following the entry into the hyper state. ﬁ
{

FIGURE 4.8: U-Binder Unit
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FROM BINDER UNITS —3 BV v4

PR —
......
.........

1 T S

FROM QUERY UNITS

QUERY

——(BP
TO RELAY AND

BO BINDER UNITS
I RELAY

FROM RELAY UNITS

WEIGHTS

Links incident at site QUERY and RELAY have a weight 0f 1.0,

Links incident at site BP have a weight 0f 0.80.

Links at site BV and BO are evidentia! links and their weights vary from 0.0 to 1.0.
(See section 4.3.5 for an explanation).

SITE FUNCTIONS

QUERY:  Returns input value
RELAY, BV: Returns sum of input values

BP: Returns the value of the highest input
BO: Add each positive value and add log(mod(input value)) for negative
value *,

* The contribution of each negative value is bounded by -2.0.
POTENTIAL FUNCTION
p(t+1) « vxp(t) + i(t) X(1.0 - vxp(t))
v = 0.6, i(t) = sum of values returned by all the sites.
STATE FUNCTION

q(t) = broadcast if p(t) > 0.0
else state = latent

OUTPUT FUNCTION

If q(t) = latent then o(t) « 0.0
If q(t) = broadcast then o(t) « p(t)

FIGURE 4.9: Concept Unit
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TO RESPONSE, 7-NO-INFO
AND QUERY UNITS

=
9
3

MAX

FROM RESPONSE UNITS

AU 1| R

WEIGHTS

All incoming links have a weight of 1.0
SITE FUNCTIONS
MAX: Returns the value of the highest input

POTENTIAL FUNCTION

p(1) « MAX
STATE FUNCTION

Single State
OLTPLT FUNCTION
o(t) « p(t)

FIGURE 4.10: Max-calculator Unit
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FROM QUERY UNITS 3-{ ENABLE 3> TO RESPONSE AND
?7-CONFLICT UNITS

—

FROM CONFLICT-DETECTOR ——
UNIT

WEIGHTS
All incoming links have a weight of 1.0
SITE FUNCTIONS

ENABI £:  Returns the value of the highest input
SUM: Returns the sum of all the input values

POTENTIAL FUNCTION

p(t+1) « vxp(t) if g(1) = inert

« 1.01ifif (1) = initial

« max (0.1, (min 1.1. 1/sum))if q(t) = interim
STATEFUNCITION

ENABLE> 0 syu>1.0

START
STATE

ENABLE = 0

OLTPUT FUNCTION

o(t) « p(1)

FIGURE 4.11: Conflict-detector Unit
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- . TO MAX-CALCULATOR, CONFLIC
N > DETECTOR AND SUBSEQUENT '
- ROUTINE UNITS
i FROM MAX-CALCULATOR AA////ﬂ—
. fMAX
UNIT
M-NET FROM MEMORY NETWORK

i FROM CONFLICT-DETECTOR UM

UNIT »

FROM QUERY UNIT __-

WEIGHTS

All incoming links have a weight of 1.0 .

SITE FUNCTIONS .1
ENABLE: Returns the value of the highest input

SUM. MAX and M-NFT: Return the input values _‘

POTENTIAL FUNCTION ®

p(t+1) « §xpl(1) if q(t) = inert

€ TUXp() + a X (M-NET+ p(t) — MAX)Y X (1.0 - T(1)xp(t))

otherwise. %

V(1) = SUM,a = 0.35and 5 = 0.6 :

STATE FUNCTION :

If ENABIED 00  then  ifp()>080  thenq(t) = winner N

else g(t) = active

else q(t) = inert

OUTPUT FUNCTION "

o(t) « p(1) 3

FIGURE 4.12: Response Unit |
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FROM CONFLICT-DETECTOR SUM

UNIT TO PRECEDINE QUERY
UNIT AND ANY y
SUBSEQUENT ROUTINE
UNITS

N—
N2

NABL

FROM QUERY UNITS

WEIGHTS

All incoming links have a weight of 1.0

SITE FUNCTIONS

ENABLE:  Returns the highest input value
SUM: Returns (1.0/input value)

POTENTIAL FUNCTION

if g(1) = inert then
pt+1) « vxp(t)

If g(1) = inert then
p(t+1) «p(t) + (SLUM-1.0) ifstM> 1.0

€ TXp(1) ifstM<10 v =06

STATE FUNCTION

If ENABLE> 0.0 then if p(1)>0.80 then g(t) = winner
else q(t) = latent
else q(1) = inert

OLUTPUT FUNCTION

o(t) « p(t)

FIGURE 4.13;: ?-Conflict Units
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FROM MAX-CALCULATOR UNIT

TO PRECEDING QUERY
UNIT AND ANY SUBSEQUENK
ROUTINE UNITS

FROM QUERY UNITS

FROM QUERY UNITS
WEIGHTS

All incoming links have a weight of 1.0
SITE FUNCTIONS
ENABL E. MAX, and ACCUM-RATE: All return the highest input value

POTENTIAL FUNCTION

1f q(t) = inert then
p(t+1) « vxp(t)

If q(t) = inert then
p(t+1) «p() + B ifMax =00
« TXp(1) if MAX > 0.0

v = 0.6: if ACCUM-RATE > 0.0 then g = 0.08 otherwise g8 equals 0.03

STATE FUNCTION
If ENABLE> 0.0 then  if p(t) > 0.80 then q(t) = winner
else q(t) = latent
else q(t) = inert

OUTPLT FUNCTION

oft) « p(t)

FIGURE 4.14: ?-No-info Units
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5. Open questions and future directions

This section briefly discusses several issues that have not been dealt with in the

4
@
N

current paper. These include technical questions on evidence theory, convergence
and learning. Furthermore, we propose to extend the current work in several
directions and some of the possibilities are outlined below. )
5.1 Evidence, Energy and Convergence
-
Throughout the earlier sections of the paper we have referred informally to our ';

treatment of representation and inference as “evidential.” The determining
characteristics of an evidential treatment are quantitative inferences and the ability to o
deal effectively with incomplete information. In this section, we discuss some basic
issues of evidential reasoning and how they articulate with our current
implementation. Evidence theory is a subject of increasing importance in artificial |
intelligence and has many unresolved issues. From a certain point of view, a large )
part of Al and related fields depend crucially on a coherent method of combining
evidence. This is particularly clear in Expert Systems efforts where combining beliefs
is often the basic operation. But we can also view all perception problems as
involving combinations of evidence for the presence of an edge, a word sense, an
object, and so forth. Since there is no generally acceptable theory of evidential
reasoning, the first question must concern how existing systems function at all.

Over-simplifying, one can say that existing evidential systems are either very
small or do not rely heavily on their rules of combination. One can, in principle,
eliminate general evidential reasoning by having a separate rule for each
combination. Many expert systems are constructed along these lines and there are
some attempts [Doyle 83] to establish that it should be done this way. The difficulties
are the combinatorial explosion in the number of combination rules and the fact that
adding a new statement involves deciding its interactions with all the existing ones.
And no one has suggested using such an approach to low level perceptual tasks.
Another reason why programs can work in the absence of a coherent evidence theory
is that many decisions are sufficiently clear-cut to be insensitive to the detailed rules
of combination. One can build vision systems that decide the presence of objects
from evidence for features with almost any monotonic rule of combination. The
other aspects of perception problems have been so difficult as to suppress the issue
of evidential inference. But the issue is always there, and becomes especially
important in connectionist treatments like the current paper. One can usually view
each unit in a connectionist network as combining evidence (its input and state) and
producing an output which can be treated as the unit's confidence in the validity of
some proposition. A principled theory of unit behavior from an evidential reasoning
standpoint appears to be necessary for the success of connectionist modelling.
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To elucidate the notion of a formal evidence theory, we will focus on a particular
rule called Dempster's Rule as expounded by G. Shafer in his book, Theorv of
Evidence [Shafer 76] and discussed in {Lowrance 82]. We will illustrate the rule with
the Quaker-Republican example used earlier. We assume that believing someone is a
Quaker provides subjective evidence that he is a pacifist and similarly for
Republicanism. As mentioned above, the theory explicitly provides a way of
expressing ignorance. Suppose we believe that 70-80% of Quakers are pacifists and
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20-30% of them are not. The Dempster formulation would have us set the evidence
weight for pacifist given Quaker, Bel (P|Q) to be .7, Bel (-P|Q) = .2 and to assign
the uncertainty formally to O, the set of all possibilities under consideration. The
formal variable @ corresponds to the residual uncertainty explicitly represented in
e.g. the color of apples in Figure 3.12. Suppose our belief about the effect of
Republicanism were Bel (P[R) = .2, Bel (=P|R) = .6, Bel (6|R) = .2. The
Dempster-Shafer theory suggests a rule for combining these tho sets of beliefs, given
that they can be treated as independent evidence. {Shafer 76] presented the formal
basis for the rule and discussed many of its properties; we will not attempt to
summarize that book here. The intuitive content of the rule is best discussed in
connection with Figure 5.1.

The outer parts of the table in Figure 5.1a simply encode the belief information
given in the previous paragraph. Each box in the table is assigned a number that
corresr ‘ads to the joint weight of its row and column and is something like a joint
probah.iity of two independent events. The crossed-out boxes capture the fact that a :
person is either a pacifist or not and so P and =P can’t co-occur. The way to view the [
entries under © is that ignorance is compatibie with anv event. Raw beliefs are
formed by adding all the table entries for each event of interest. Since some joint 1
events are logically precluded, the final belief structure is computed by normalizing i
with (dividing by) the sum of raw beliefs. The resulting answers are plausible. but do :
not make a compelling case for this particular rule of combination. )

in fact. there are some unresolved issues with Dempster's rule (particularly on
exactly when it applies), but it has a number of advantages for our purposes. An
obvious advantage is that the set of beliefs for any question always adds o one, so
that more evidence can he added in a uniform wus. Suppose that we now learn that
Dick is a nember of the Marine reserves and believe that this suggests non-pacifism
(.8) with @ = .1. Then the results of our previous calculation can be combined with
this new evidence, incrementally (Figure 5.1b). The result would be a belief in Dick’s
non-pacifism of .77, of his pacifism equal .22, and uncertainty of .01. Similar
calculations can be made using the strength of Dick’s Quaker and Republican heliefs
if these are known. This collection of features mukes the Dempster-Shafer evidence
theory a qualitative improvement over previous suggestions in Al for handling
conflicting evidence [Quinian 83] and suggest that the theory should be considered
seriously by expert-system designers.
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There are a number of other proposed rules for combining evidence and. in each
case including Dempster's rule, there are clear situations where the rule is counter-
intuitive. In fact, there is a considerable literature [Kvburg 74] on this subject.
primarily by philosophers. Our current belief (sic) is that there are a modest number
of distinct evidential situations for which different rules of combination are
appropriate, but we have no idea whether they can all be treated as variations on a
single principle such as maximum entropy. The point of current interest is that a
formal evidence theory to specify the behavior of connectionist and other evidential
systems is necessary and possible. Many of the detailed design decisions presented in
Sections 3 and 4 are based on evidential considerations but we do not vet have a
formal mapping from our implementation to any theory. One reason is that any
connectionist implementation must also take 1nto account the dynamics of network
behavior.
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Given that one has a way of specifying what a system should do, there remains
the problem of showing that the goal is achieved. This dynamic correctness question
for massively parallel systems has been receiving considerable attention and
considerable progress is being made. A key insight of Hopfield [Hopfield 82] is that
there is a close analogy between certain physical systems and connectionist networks
whose desired behavior can be characterized by minimizing global energy functions.
In this case, one can choose a unit rule that always reduces the global energy and
thus insure convergence to at least a local minimum (of energy). The idea is easiest to
see in a recognition situation [Geman & Geman 84]. The total energy could be made
up of separate terms, each of which represents the compatibility of some hypothesis
with the features found in the input. [deally one would have all the relevant terms
represented by separate units and arrange that each unit could compute its next value
(of state or potential) in a way that reduced the total energy of the system. For
example, a "line” unit that had inputs from many compatible "edge” units would
assume a large (negative) value. Continued operation of the individual units would
drive the system to a low energy state i.e. a solution. Of course, the situation is much
more complicated than this (cf. [Hinton & Sejnowski 83]) and a number of serious
technical problems remain to be solved. But the general idea of local operations that
act to minimize a criterion is a fine way to look at the dynamics of connectionist
networks.

One major difficulty with local relaxation schemes like that described above is
that the system state can drift into a local minimum that is not an adequate solution
to the original problem. The issue of a network converging to an incorrect solution is
central in any formulation -- the energy function provides a convenient metaphor. A
familiar example from perception is an image that is coarsely sampled, seen too close
up. Your visual system detects edges that can't be interpreted. Moving back or
squinting allows the system to reach a better overall solution by making it less
confident of the spurious edges. The problem of false minima is inherent in
connectionist networks because activation must spread through several levels in any
non-trivial computation. There is no way for an irreversible local decision to be
correct in all cases. There are a variety of ways to avoid local minima in recognition
problems. One proposal is to use stochastic methods so that there is a high
probablility of reaching a good solution [Hinton & Sejnowski 83]. Another idea is to
design the energy function so that global organization has a large enough role to
preclude stable local minima. Each of these has advantages and disadvantages. A
third method, used in this paper. is to have the local computations move slowly in
the direction perceived to be correct at each instant. The idea here is that distant
computations have time to make their impact before a local configuration reaches a
stable state. One pitfall in any dynamic system is oscillation and our design also
avoids this problem.

In the current framework the controlled nature of spreading activation in the
Memory Network and the restricted (only local) use of negative activation ensures
that the nodes in the Memory Network will reach a stable level of activation. A look
at the three kinds of queries supported by the network and the ensuing activity in
the Memc+ ; Network should help in making this point. The use of enable signais on
Binder and Relay nodes prevents spreading of activation that is irrelevant in the
context of the query being processed. For each query, the activation flows along
designated structural links only and converges to a few concept nodes (Values in case
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of Class I queries and Owners in case of Class Il queries). Each node accumulates the
incident activation and the potential of these nodes increases in time to a steady state
value. The only exception is the case where negative evidence inhibits a owner
during the processing of a Class Il query. However, even this does not result in an
oscillatory behavior because the negative evidence impinging on a node is from
strictly local nodes (its own Binders) and its contribution takes effect within a
constant number of steps after the owner starts receiving positive activation.

Although there is no oscillatory behavior in the Memory Network, the problem
of convergence and oscillations must also be considered in the context of the Answer
Network. The source of oscillations in the Answer Network is conilicting evidence
and incomplete information in the Memory Network. If two or more Response
nodes in the Answer Network receive nearly equal activation from the Memory
Network. there is a possibility of both the nodes rising to a high potential. The
design of the Answer Network (as described in Section 4.4.3) is such that when this
occurs, the growth of potential of all Response nodes is slowed down in the hope
that eventually one of the answers will be able t¢ dominate and win. This assumes
that activation spreading along structural links mav eventually activate paris of the
Memory Network that may provide evidence to resolve the conflict. In case this does
not happen within a reasonable interval the {?-conflict] node in the Answer Network
begins to acquire a high potential and eventually wins. This mimics a time-out
phenomena. A similar strategy is adopted to decide in the favor of [?-no-info] answer
if none of the possible answers is getting any activation for a sufficiently long time.
The duration of time-out is a design parameter and mayv be varied to meet specific
design goals.

The current situation is that we are pursuing in parallel theories of evidence and
convergence and the design of semantic neural networks. The current sciutions 10
evidence and convergence problems have been robust over other changes in the
system. The [?-conflict] node in answer networks deals with the dynamics issue of no
clear answer. The [?-no-info] deals with the evidential issue of inadequate
information. While there is no substitute for principled theories of behasvior and
dynamics for connectionist networks. we have been able to make progress in
representation and inference questions within the current semi-formal framework.

5.2 Extracting answers from the Memory Network

In Section 3 we restricted the kinds of queries handled by the system to be
multiple choice questions. We will now re-examine some important issues underlving
this restriction.

Queries are posed to the Memory Network (network) by activating certain nodes
and enabling specfic links in the network. Once the state of the network is thus
initialized, the inference process proceeds independently in the network according to
the built-in rules of propagation and evidence accumulation. The ensuing state of the
network (primarily the levels of activation of concept nodes), in a sense, is the resull
of the inference performed in response to the query. However, the set of active nodes
in the network resulting from a query not only includes nodes that correspond to the
answer being sought, but also includes other nodes that take part in the inference
process. For instance, in a query involving property inheritance many nodes along
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the Type hierarchy may get activated before the node that represents the answer.
With respect to Figure 5.2, a query such as v (B PI) (What is the value of the
property Pl of B), results in the activation of nodes C and D besides the node V1.
The activation of nodes C and D may be viewed as intermediate steps in the
inference process whereby the initial query ?v (B PI) is succesively mapped into v
(C PI) and v (D PI).

The presence of other active nodes besides the ones representing the answer
raises the fundamental question of how to extract the final answer from the resulting
state of the network. In the framework described in this paper we have finessed the
problem of answer extraction by employing Answer Networks in routines. Routines
always pose queries with reference to an explicit frame of discernment (the set of
possible answers). The frame of discernment is encoded in the form of an Answer
Network and the final answer is determined by the Answer Network node that
receives the strongest support from the Memory Network.

Assuming the availability of an explicit frame of discernment is consistent with
the notion of routines. Routines represent pre-wired (compiled) networks dedicated
to specific tasks and hence it may be assumed that the possible answers to queries
originating from routines are known in advance and encoded as Answer Networks
within the routines. However, it is easy to visualize situations in which one cannot
assume advance knowledge of the frame of discernment (in the present context - the
existence of a routine with an appropriate Answer Network). A query such as “What
does John like most?" does not have an obvious frame of discernment. The answers
could be as varied as "ice-cream” (a kind of food), "science fiction” (a kind of
literature), “tennis” (a sport) or even something such as "a glorious sunset” or
“freshly fallen snow”. The problem is further confounded in situations where the
answer does not correspond to a specific node in the Memory Network but must be
expressed by interpreting the relations between a number of active nodes. An
example of this could be an answer such as: "the tall man wearing the black tie...”
which would involve many active nodes. a probable set being nodes that represent
MAN. HAS-HEIGHT. TALL. TIE. HAS-COIOR. BLACK and /S-WFEARING.

In its most general form. the problem of answer extraction is related to and seems
at least as complex as the problem of natural language generation. We feel that the
work of other researchers in this area [McDonald 83: Dell 80; Simmons & Slocum
72] will provide us with valuble insights. Though at present we have not directed
much effort towards solving this problem, we propose a possible way of dealing with
some restricted cases of answer extraction in the absence of an explicit frame of
discernment.

The kind of queries dealt with in this paper often define an implicit frame of
discernment (fod) that consists of all instances of some Type represented in the
Memory Network. Consider queries whose answer amounts to selecting an instance
of a given Type on the basis of some specified property values. Such queries define
an implicit fod consisting of the instances of the Type. For example. in the query:
“Name a red tropical fruit”, all the instances of the Type FRUIT constitute the fod.
Orther queries that specify a Concept (Type or Token) and a property and seek the
value of the property may also define an implicit fod that consists of the possible
~alues of the specified property. Often. the set of possible values correspond to a
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single Type in the Memory network. For instance, query such as "What is the color
of an Apple”, implicitly defines a fod that consists of all the instances of the Type
COLOR. However, all queries do not define an obvious fod; the query “"What does
John like most?" that may be interpreted as {?v (JOHN HAS-LIKING-FOR)), is a case
in point. The cases in which an existing Type in the Memory Network constitutes a
Jfod may be handled by requiring the design of the Memory Network to be such that
all instances belonging to a Type be linked together in a WTA fashion. This amounts
to having an Answer Network corresponding 10 each Type in the Memory Network -
with the instances of the Type constituting the possible "answers”. The WTA
associated with the appropriate Type may be selectively enabled by routines during
the processing of appropriate queries.

It is possible to extend the above idea to handle gu=ries that have a very diffuse
fod if any. This is done by using routines o perform a hierarchically organized
search. If no fod is suggested by a query then the fod associated with the maost
general concept in the Memory Network is taken as the initial fod. As the
computation progresses. the fod is refined incrementalls by moving down the Tipe
hierarchy until an acceptable answer is found. We illusirate this with the help of a
simple example.

Figure 5.3 shows a simple hierarchy of Concepts in some Memory N\etwork.
Nodes enclosed in dotted lines form wTA networks. The WTA networks (WTA for
short), are named after the immediate Type whose instances make up the nodes i
the WTA. Thus. the WTA consisting of TENNIS and BASEBALL is referred to as [SPORT
WTA]. Now imagine that the query "What does John like most?” is posed to the
Memory Network. This will be done by activating JOHN and HA4S-1IhING-FOR. As no
fod is suggested by the query the WA correspending to EVERYTHING will be
selected as the initial fod Hence. the routine will enable [FVERYTHING WTA]
consisting of the choices PHYSICAL-THING and NON-PHYSICAL-THING.

As a result of the routines activating JOHN\ and HAS-LIKING-FOR, the nodes ICE-
CREAM. GLORIOUS-SUNSFT. SCIENCE-FICTION and TENNIS will receive varying
degrees of activt1ion in proportion to the strengths of John's likings for each of them.
These nodes wiii transmit activation up the Type hierarchy and eventually the nodes
PHYSICAL-THING and NON-PHYSICAL-THING will also be activated. Without loss of
generality, let us assume that NON-PHYSICAL-THING receives greater activation and
wins the competition. Consequently, the fod now becomes {NON-PHYSICAL-THING
wTA] with the choices being VISUAL-EXPERIENCE. LITERARY-KIND and SPORT.
Continuing in this manner it is easy to see how in subsequent steps the fod may
converge to [LITERARY-KIND WTA] with the choices being SCIENCE-FICTION and
SHAKESPEARFAN-TRAGEDIES. If John likes SCIENCE-FICTION more than
SHAKESPEAREAN-TRAGEDIES then it is easy to see how SCIENCE-FICTION will be
chosen as the answer. Although we have not specified . termination criteria, one may
imagine rules that terminate the process when the fod consists of nodes at the
subordinate level [Rosch 75], or when one of the choices is above some absolute
threshold.

Under the above proposal the routines essentially perform a breadth first search

in parallel and the number of steps taken by even the most general query are
proportional to the depth of the conceptual hierarchy. Admittedly the proposal needs
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to be refined and we hope to do this in the near future.
5.3 Extending the representational framework

Our approach to the problem of semantic information requires us to treat the
traditionally distinct issues of knowledge representation, inference and computational
framework simultaneouly. In order to keep the over all complexity within
manageable bounds while being honest to the approach, our strategy has been to
consider only a restricted class of representational issues. This has allowed us to
devote requisite attention to issues related to inference and the development of a
connectionist system that embodies our solutions. In terms of purely representational
issues we have thus far focused primarily on developing a framework that is best
suited for representing simple concepts and natural kind terms. There are several
important issues that we have not addressed as yet. These include representation of
complex information such as description of actions, events, complex shapes,
definition of composite relations, finer structure of properties and constraints
between property values (structural descriptions {Brachman 79]). An open question is
the division of knowledge between the Memory Network and the routines.
Eventually, some of the information referred to above may be represented in the
form of routines rather than in the Memory Network. Needless to say, many
problems remain to be solved, but on the basis of our experience so far we are
hopeful that it will be possible to extend the framework to solve most of the open
questions. In this section we present a few assorted examples to indicate the kinds of
issues being pursued.

Figure 5.4 shows the representation of the predicate LOVES. In the context of
predicates it is easy to see the similarity in the notion of properties as used in our
formulation and case roles that denote relations between predicates and noun phrases
[Bruce 75; Fillmore 68]. The simplified representation in Figure 5.4 suggests that a
PREDICATE has two case roles namely, HAS-AGENT and HAS-PATIENT. For the more
specific predicate 1.OVES these cases roles get mapped into H.4S-LOVE-4GFNT and
HAS-LOVE-PATIENT which in turn are filled by JOHN MARY in the representation of
"John loves Mary".

In the example discussed above we used specific nodes such as HA4S-LOVE-AGENT
and HAS-LOVE-PATIENT as well as more general nodes such as HAS-AGENT and HAS-
PATIENT. This corresponds to the use of exploded cases, a notion that has been found
to be extremely useful in work on connectionist modeling of natural language
processing {Cottrell & Small 83). In Section 2 we over-simplified and used values
such as red and green for the colors of apples and pears. However, we expect to
represent these values by concepts that are much more fine grained. [n developing
representations it is important to bear in mind “at the normal usage of language
often belies the complexity of the information being communicated. In some cases
detailed information may not be articulated as it is not relevant to the situation.
However, oftentimes, a speaker does not make certain distinctions because he relies
upon the hearer to make these by using his world knowledge. For instance. while
refering to the color of an apple and that of a brick as "red” one seldom means that
they are the one and the same color. One assumes that the hearer is aware of the
difference between the two colors and hence will be able to interpret the two usages
of "red” appropriately. In view of the above we intend to use color values such as
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- APPLE-RED. ROSE-RED and BRICK-RED. It is important to make these distinctions in
x a knowledge representation scheme in spite of the surface uniformity of language.
Traditional knowledge representation systems do not have to represent these
a distinctions explicitly as they can shift this burden to the interpreter; the interpreter
may be programmed to treat differently the value "red” when it is associated with
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distinct objects. The absence of an interpreter in our formulation, however. makes it
necessary to explicitly represent concepts at a finer grain. We envisage the
relationship between concepts such as APPLE-RED and RED to be the same as that
between RED and COL.OR. The properties associated with color — HUE, BRIGHTNESS
and SATURATION — may be used to make classifications like RED and GREEN and
also to make finer distinctions like BRICK-RED and APPLE-RED.

The role of exploded concepts acquires added importance in the representation of
semantic information about events and actions. Finer case roles like HAS-LOVE-
AGENT, HAS-BUY-AGENT and HAS-PROPEL-AGENT are needed 10 represent detailed
information about and differences in predicates such as LOVE. BUY and PROPEL.
Furthermore, distinct case roles make it possibie 10 represent possible constraints on
values of case roles. The hierarchical organization ~f concepts of varying granularity
gives the ablity to perform general inferences abou! COLOR and HAS-AGENT as well
as specific inferences about APPLE-RED and HAi5-1 OVE-AGENT.

We also wish to pursue the representation of other ontological categories such as
events. sets and situations. Different ontological categories have different sorts of
attributes associated with them. For example. the representation of events could be
based on properties such as TIME-OF-OCCURRFACE. LOCATION-OF-OCCURRENCE.
CAUSE-OF-OCCURRENCE and DESCRIPTION-OF-OCCURRENCE. In modelling actions
and events we hope to take advantage of the work by other researchers in Al and
linguistics [Jackendoff 83: Bruce 75: Schank 73). Figure 5.5 shows a simple example
encoding the event described by "Jim made John hit Tom vesterday”. As before. the
figure is meant to convey a general idea of how we intend to approach these
problems.

Sets and situations may be also be represented in a manner similar w that of
other concepts. By scts we mean a finite and unordered collection of enuities where
the members of the set are explicitly enumerated. This corresponds to a naive notion
of sets and is not equivalent to that of formal set theory. Like all other conceptual
entities. sets aic also represented as collections of <attribute. value> pairs. This
collection includes a pair for each member of the set where the property in the pair
is HAS-MEMBFR and the value is one of the member concepts of the set. The
collection of <attribute. value> pairs defining a set may also include structural links
such as is-a-subset-of and is-a-superser-of. Inferences on sets will be controlled by
specific routines that will compute set-membership, union and intersection.

A situation is a special kind of set consisting of entities, a set of relations on these
entities and an associated location and time. Examples of situations are: "Harvard
Square on a Friday night” or "an auction at Sotheby's”. {[Feldman 82b} describes
how knowledge encoded as situations may be used during visual recognition.
‘° Situations may be represented in our formulation by extending the properties
[ associated with sets to include the attributes HA4S-LOCATION and HAS-TIME-OF- !

3 OCCURRENCE, and restricting the members of the set to be relations and entities ‘
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ocurring in these relations. The interactions between routines and situations remains
to be worked out.

5.4 Learning

One standard criticism of connectionist models is that there is no plausible
mechanism for the acquisition of knowledge. Although the problem of learning has
not been solved for systems with a central interpreter and data structures, but there is
clearly enough mechanism in this formulation to support learning. For connectionist
modelers the problem is made more difficult by the biological constraint that new
connections cannot be nearly rapid or extensive enough to account for everyday
learning. The only mechanism available appears to be the change in the effectiveness
(weight) of existing connections (synapses). Fortunately, there does seem to be
adequate biological support for learning through weight change and there is a
constderable literature on the mathematics of various possible alteration schemes. But
all of this is focused on problems that are structurally much simpler than our
routines and memory networks. The key technical issue is how a connectionist
network could have a pre-existing structure rich enough to allow for learning the
representations described in earlier sections of this report. Although we are far from
solving this problem, we have a general idea of how learning may occur in the
Memory Network. The learning of routines has not yet received serious attention.

The proposed mechanism for learning in the Memory Network is based on the
notions of recruitment and chunking [Feldman 82a; Wickelgren 79] and we will
discuss these in brief before outlining a plausible mechanism of concept formation.
Broadly speaking, the idea of chunking may be described as follows: At a given time.
the network consists of two classes of nodes:

1. Committed \odes. These are nodes that have acquired a distinct “meaning”
in the network. By this we mean that given any committed node, one can
clearly identify sets of other committed nodes, whose activation will result in
the former becoming activated. Committed nodes are connected to other
committed nodes by "strong” links, and to a host of other free nodes, (see
below), via "weak" links.

2. Free Nodes. These are nodes that have a multiplicity of weak links to other
nodes, both free and committed. These form a kind of "primordial network"
of uncommitted nodes within which the network of committed nodes is
embedded.

Chunking involves strengthening the links between a cluster of committed nodes
and a free node. Thereafter, the free node becomes committed and functions as the
chunking node for the cluster i.e.. the activation of nodes in the cluster results in the
activation of the chunking node and conversely, the activation of the chunking node
activates all the nodes in the cluster. The process by which a free node is transformed
to a committed node 15 c¢c2Ved recruitment. The mechanics of recruitment in
connectionist networks 1s descric-.d in detail in [Feldman 82a]. The basic insight in
the solution to the problem of learning through weight change is that certain classes
of random connection graphs have a very high probability of containing the sub-
network needed for learning a new concept.
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The notion of chunking in its generic form only suggests a mechanism whereby
nodes can be associated and is not sufficient for explaining how structured
relationships arise. In the proposed solution we wish to exploit the non-trivial
structure resulting from assuming that knowledge is organized in terms of properties
and values thereof. We postulate that learning takes place within a network that is
already organized to reflect this structure. For instance, in the context of vision, we
specifically assume that concepts that correspond to primitive properties like color,
shape, texture and motion are already present in the Memory Network of an agent
together with concepts that represent some basic values of these properties. Simple
forms of learning result in the formation of concepts that represent coherent
collections of existing properties and values, while more complex forms of learning
lead to generalization of concepts and the formation of complex properties that in
turn lead to development of more comp.cr  neepis.

We will consider a toy example of a Memor. Network interacting with a very
simple visual system that is capable of detect:=g the colors blue and green and the
rmitive shapes round and oval. The initial organization of the Memory Nemwork
.+« into account these characterstics of the visual system. Figure 5.6a is an

- ..umplified representation of the initial organization of the Memory Network. The
. . work has four pre-existing concepts nameiyv. the property HAS-COLOR and its
.«wues BLUE and GRFEN and the property H 45-SH4PF and its values ROUND and
OVAL. In other words, the nodes representing the properties and values are already
connected to the visual system and may be activated by it under appropriate
conditions. The nodes representing the four concepts are committed nodes
embedded in a "primordial network™ of free nodes that may be roughly partitioned
into three diffused sub-networks X, Y and Z. Network X consists of nodes that are
primarily connected to the nodes H45-CO/ OR, BLUE and GREEN along with a host of
free nodes in network Z. Nodes in network Y receive most of their connections from
the nodes H4S-SHAPE. ROUND and OVAL and also from numerous free nodes in
newwork Z. Finally. the nodes in network Z are connected to a large number of nodes
throughout the Memory Network. The existence of networks X and Y indicates that
the Memory Network is pre-wired to "know™ that BLUF and GREEN are values of
+ 45-COLOR while ROUND and OVAL are the values of HAS-SHAPE.

- 2ure 5.60 depicts the result of learning an instance of a blue and round object.
~- figure only shows the committed units and their interconnections. Learning an
swnce involves two stages of recruitment; the binder nodes Bl and R1 are

:ecruited first, followed by the concept node BR1. When the visual system detects
the color blue in the stimulus it activates the node H.AS-COLOR and BLUE. The
coincident activation results in the recruitment of a free node (B1) from the pool of
free nodes in network X. The node R1 is recru” 2 in an analogous manner from the
pool of nodes in network Y. The simultaneous s uvity in Bl and R1 leads to the
recruitment of the node (BR1) from network Z. Thereafier, the nodes Bl and R act
as binder nodes and BR1 represents the newly acquired concept. Bl is activated by
the coincident activity of HAS-COLOR and BLUE while R1 is activated by the
coincident activity of HAS-SH4PF and ROUND. The activity of the concept node BR1
is strongly correlated with the activity of Bl and RI.

The working of the scheme depends on the assumptions we made about the pre-
existing structure of the Memory Network. It was crucial 1o assume the existence of
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property and value nodes with appropriate connections to the visual system. The
organization of free nodes as networks X, Y and Z was equally important. Networks
X and Y provided binder nodes in order to associate properties with their values, and
the network Z provided a pool of nodes that could be recruited to “chunk” binder
nodes in order to form concepts.

Figure 5.6¢c depicts the Memory Network with three instances (BR1, BR2 and
BR3) of blue round objects and one instance (GO1) of a green oval object. In this
situation a second kind of concept formation may occur and result in the formation
of the concept "blue and round object” which is a generalization defined over BR1,
BR2 and BR3. The resulting network is shown in Figure 5.6d. The new concept is
represented by the node BR that owns the binders B and R that indicate its property
values. These property values correspond to the shared property values of the
instances.

The transformation from the network in Figure 5.6¢ to that in Figure 5.6d is best
explained with the help of the simpler networks shown in Figure 5.7. The network
shown in Figure 5.7b is the result of a similar transformation of the network in
Figure 5.7a. The three instances A, B and C have the same value (V) for the property
P and this forms the basis for the formation of the more general concept D. The
transformation occurs in two stages.

[. A chunking node for bl. b2 and b3 is recruited from a pool of free nodes
that serves the same function as network Z in the previous example, i.e.
provides a potential concept node.

I1. 1) Over a longer period of time. the multiple paths between P and V via bl,
b2 and b3 collapse into a single path via b, where b is one of the existing
binder nodes bl, b2 or b3. The collapsing of links does not mean that the
links disappear, but rather that the weights of links get reduced in such a
way that all binder nodes besides b, gradually become free nodes (are
released).

i) The connection between b and D remain strong but the connections
between other binder nodes and D become weak.

iii) The links x,y and z (in effect) now emanate from D rather than the
binder nodes.

(All changes described in stage II happen during the same time interval).

The net effect of | and Il is that the network shown in Figure 5.7a behaves like
the network shown in Figure 5.7b. The scheme that we have just described
characterizes learning as network transformations that minimize the complexity of
the network (number of links and nodes) while maintaining the cause effect
relationships between existing concept nodes. Thus, the nodes P, V, A, B and C have
roughly the same effect on each other in the two networks shown in Figures 5.7a and
5.7b. The complexity of networks is substantially reduced by formation of more
general concepts although this may not be evident from this simple example. In
general, if the generalization takes place over p properties and ¢ instances (the values
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i of p and ¢ were 1 and 3 in the example of Figure 5.7 and 2 and 3 in the example of
- Figure 5.6d), then the savings in the number of links and nodes is of the order of
pXc.

Referring back to Figure 5.6d. BR, a node in network Z, will be recruited as a
chunking node of Bl, B2, B3 as well as R1, R2 and R3. The release of binder nodes
and the collapsing of links will occur separately for the two properties H4S-COLOR
and HAS-SHAPE. Thus, Bl, B2 and B3 will collapse into B while R1, R2 and R3 will
collapse into R.

We have only provided a crude description of how recruitment of free nodes and
release of committed nodes gives rise to representation of new instances and
development of concepts that are generalizations of existing concepts. The latter kind
of concept formation is accompanied by substantial reduction in the number of
committed nodes and links. We hope to refine some of these ideas in the near future.
A more detailed account will appear in [Shastri 84].

We expect that we will not require major changes in the basic design of our
networks in order to support iearning. The connecuonist implementation described
in this paper uses some complex unit types but it is possible o implement the same
basic déesign in terms of simpler unit types that are more likely to fit into a learning
scheme. The primary reason for not using the simpler unit tvpes was to keep the
simulations simple. The use of simpler umt types wouid result in larger networks
because more than one simple unit would be required to perform a function
currently performed by a single unit. Probably the best way to view this subsection
on learning and the other parts of Section § s as plaustbility arguments suggesting
that there are no insuperable barriers to a complete connectionist theory of semantic
memory. We would greatly appreciate comments on problems we have overlooked
or on any other aspect of the report.
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